• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 12
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 46
  • 23
  • 16
  • 14
  • 11
  • 11
  • 10
  • 9
  • 7
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Insulin, Cholesterol and A-beta: Roles and Mechanisms in Alzheimer’s disease

Najem, Dema 08 January 2014 (has links)
Alzheimer’s disease (AD) is characterized by amyloid-β (Aβ) and tau pathologies, insulin resistance, neuro-inflammation and dysregulation of cholesterol homeostasis, all of which play a role in neuro-degeneration. The main aim of this study was to determine possible relationships between insulin signaling, cholesterol biosynthesis and their effects on Aβ, and inflammatory response in vitro. Insulin treatment increased cholesterol synthesis in human Neuroblastoma SH-SY5Y (SHY) and mouse neuroblastoma 2a (N2a) and N2a transfected with human APP (N2a-APP) by up-regulating biosynthesis enzymes including 24-dehydrocholesterol reductase (DHCR24) and 3-hydroxy-3methyl-glutaryl-CoA reductase (HMGCR) through sterol regulatory element binding protein-2 (SREBP2) up-regulation. Aβ caused insulin resistance in N2a-APP cells by phosphorylating IRS-1 at Ser612, inhibiting signaling to downstream targets. Aβ1-42-treated SHY exhibited similar IRS-1 phosphorylation at Ser612 and inflammatory response of JNK activation. Aβ1-42 caused down-regulation of neuro-protective/anti-inflammatory DHCR24, and an increase in HMGCR levels indicating dysregulation of cholesterol homeostasis in SHY cells. Insulin resistance, Aβ toxicity, neuro-inflammation and dysregulation of cholesterol homeostasis appear to be intertwined processes in AD that should be studied simultaneously.
12

Cell Permeability Studies of AApeptides and Novel Molecular Probes for AD

Bai, Ge 08 April 2016 (has links)
Alzheimer's diseases(AD) has been discovered and under research for more than 70 years, However there is no cure for these progressive and devastating diseases. Based on the following hypothsis: Aß metabolite problem/over production result in the accumulation, and lead to aggregation is the cause of Alzheimer’s disease. AApeptide and Melatonin derivatives can bind to Aß and block the aggregation of β amyloid monomers, decrease the toxicity of Aß to neurons and slow the progressive of Alzheimer’s diseases. In addition, AApeptide which mimic transmembrane peptide Tat will have similar transmembrane function. We have set up our goals as follows: 1) Using newly discovered peptidomimetics, AApeptides. We moved on to research to discover their potential of transmembrane activity and anti-Alzheimer's acitiviy. 2) In Addition, studies of small molecule melatonin derivatives were also progressed. Methods include in this research includes bioorganic synthesis, identification of spectroscopy and relative assays targeting on biological efficiency of Anti-Alzheimer’s diseases. The details of which will be described in Chapters. In conclusions, two sets of transmembrane peptidomimetics for drug transportation has been successfully evaluated and potential of AA peptide small molecules, melatonin derivativesare also evaluated. These works have gained good progress in research between AApeptide and Alzheimer’s Diseases. These works also established basis of research in developing peptidomimimetics as potential pharmacies against Alzheimer’s diseases.
13

Insulin, Cholesterol and A-beta: Roles and Mechanisms in Alzheimer’s disease

Najem, Dema January 2014 (has links)
Alzheimer’s disease (AD) is characterized by amyloid-β (Aβ) and tau pathologies, insulin resistance, neuro-inflammation and dysregulation of cholesterol homeostasis, all of which play a role in neuro-degeneration. The main aim of this study was to determine possible relationships between insulin signaling, cholesterol biosynthesis and their effects on Aβ, and inflammatory response in vitro. Insulin treatment increased cholesterol synthesis in human Neuroblastoma SH-SY5Y (SHY) and mouse neuroblastoma 2a (N2a) and N2a transfected with human APP (N2a-APP) by up-regulating biosynthesis enzymes including 24-dehydrocholesterol reductase (DHCR24) and 3-hydroxy-3methyl-glutaryl-CoA reductase (HMGCR) through sterol regulatory element binding protein-2 (SREBP2) up-regulation. Aβ caused insulin resistance in N2a-APP cells by phosphorylating IRS-1 at Ser612, inhibiting signaling to downstream targets. Aβ1-42-treated SHY exhibited similar IRS-1 phosphorylation at Ser612 and inflammatory response of JNK activation. Aβ1-42 caused down-regulation of neuro-protective/anti-inflammatory DHCR24, and an increase in HMGCR levels indicating dysregulation of cholesterol homeostasis in SHY cells. Insulin resistance, Aβ toxicity, neuro-inflammation and dysregulation of cholesterol homeostasis appear to be intertwined processes in AD that should be studied simultaneously.
14

Strain-specific profiling of Amyloid-β in Alzheimer´s disease: functional and clinical signature

Noor, Aneeqa 27 May 2021 (has links)
No description available.
15

Mécanisme d’activation neuronale de mTORC1 et de son altération par le peptide amyloïde β / Mechanism of neuronal activation of mTORC1 and its alteration by amyloid β peptide

Khamsing, Dany 29 November 2017 (has links)
MTOR est une sérine/thréonine kinase appartenant au complexe mTORC1 (mTOR Complexe 1), un régulateur clé de la traduction. Ce complexe joue un rôle au sein de la LTP (Potentialisation à Long Terme), une forme de plasticité synaptique qui requiert la synthèse de nouvelles protéines pour renforcer la transmission synaptique. La première partie de ma thèse porte sur les mécanismes de régulation de la voie mTORC1 dans les neurones. Dans les cellules non neuronales, cette voie de signalisation est classiquement régulée par deux voies distinctes. D’une part, les acides aminés induisent le recrutement du complexe mTORC1 à la membrane des endo-lysosomes où la protéine Rheb est enrichie et favorisent ainsi l’activation de mTORC1. D’autre part, les facteurs de croissance activent mTORC1 en stimulant la voie PI3K/Akt/TSC/Rheb. Nos résultats indiquent que les neurones sont capables d’ "utiliser" le mécanisme responsable de la translocation de mTORC1 en réponse à la supplémentation en acides aminés pour coupler l’induction de la plasticité synaptique à l’activation de mTORC1. En effet, les récepteurs NMDA et le BDNF, deux acteurs centraux de la LTP, augmentent le recrutement de mTORC1 à la membrane des endo-lysosomes même en absence d’acides aminés, et activent mTORC1. Par des stratégies induisant la translocation de mTORC1 à la membrane des endo-lysosomes, nous avons montré que ce mécanisme est important pour l’activation de mTORC1 mais n’est pas suffisant : il faut également une activation de la protéine Rheb. Le second aspect de mon projet porte sur la régulation de mTORC1 dans le cadre de la maladie d’Alzheimer, une maladie neurodégénérative caractérisée par une perte progressive de la mémoire. Les déficits cognitifs s’accompagnent d’un dysfonctionnement progressif des synapses suivi par la perte neuronale, tous deux causés par une accumulation anormale du peptide amyloïde β (Aβ). Les données de la littérature montrent que les oligomères toxiques du peptide Aβ (AβO) inhibent la plasticité synaptique dans les stades précoces de la maladie. Cependant, les mécanismes restent obscurs. Plusieurs études mettent en évidence une altération de la voie mTORC1. Nos résultats montrent que les AβO inhibent le recrutement de mTORC1 à la membrane des endo-lysosomes. Ce mécanisme est rétabli par une inhibition pharmacologique de l’AMPK. Ainsi, ces données indiquent que les AβO inhibent l’adressage de mTORC1 aux compartiments endo-lysosomaux via l’AMPK. Cela aurait pour conséquence une inhibition de la synthèse protéique décrite dans la littérature et contribuerait ainsi au dysfonctionnement synaptique. / MTOR is a serine/threonine kinase that belongs to mTORC1 (mTOR complex 1), a key regulator of translation. This complex is involved in LTP (Long Term Potentiation), a form of synaptic plasticity requiring new protein synthesis to reinforce synaptic transmission. The first part of my thesis investigates the mechanism of mTORC1’s regulation in neurons. In non-neuronal cells, mTORC1 pathway is commonly activated by two distinct pathways. On the one hand, amino acids induce mTORC1 recruitment to the membrane of endo-lysosomes where Rheb is enriched and can thus promote mTORC1 activation. On the other hand, growth factors activate mTORC1 via the PI3K/Akt/TSC/Rheb pathway. Our results indicate that neurons are capable of “using” amino acid-induced translocation of mTORC1 to connect synaptic plasticity induction to mTORC1 activation. Indeed, NMDA receptors and BDNF, two main actors of synaptic plasticity, increase mTORC1 recruitment to the membrane of endo-lysosomes even in the absence of amino acids, and activate mTORC1. Using strategies targeting mTORC1 to endo-lysosomes, we show that this mechanism promotes activation of mTORC1 but is not sufficient: Rheb activation is also required. The second part of my project is focused on the regulation of mTORC1 in Alzheimer’s disease, a neurodegenerative pathology characterized by a progressive memory loss. Cognitive deficits are widely believed to result from a progressive dysfunction of synapses, followed by a loss of neurons, both caused by an abnormal accumulation of the amyloid β peptide (Aβ). Data from others show that toxic Aβ oligomers (AβOs) inhibit synaptic plasticity at early stages of the disease. However, the mechanisms remain poorly understood. Several studies indicate an alteration of the mTORC1 pathway. Our results show that AβOs inhibit mTORC1 recruitment to the membrane of endo-lysosomes and that this effect can be rescued by a pharmacological inhibition of AMPK. Thus our data indicate that AβOs inhibit mTORC1 translocation to endo-lysosomal compartments via AMPK. This could lead to the impairment of protein synthesis reported in other studies and thus alter synaptic function.
16

Effets des acides gras ω-3 sur l'inflammation cérébro-vasculaire associée à la maladie d'Alzheimer et aux angiopathies amyloïdes cérébrales / Effects of ω-3 fatty acids on cerebro-vascular inflammation associated with Alzheimer disease and cerebral amyloid angiopathies

Hur, Justine 29 September 2017 (has links)
La maladie d'Alzheimer (MA) et l'angiopathie amyloïde cérébrale (AAC) sont respectivement caractérisées par des dépôts de peptides amyloïdes β (Aβ) dans le cerveau et la vascularisation cérébrale. Étant donné qu’un régime riche en DHA est associé à une réduction du risque de la MA, l'objectif principal de ma thèse a été d'évaluer l'impact d'un régime enrichi en DHA sur l'inflammation systémique et ses conséquences sur les dépôts Aβ parenchymateux et vasculaires au cours du vieillissement dans un modèle de souris transgéniques de MA/AAC, les Tg2576. Les dépôts amyloïdes ont été détectés en utilisant un anticorps anti-Aβ et les hémorragies avec du bleu prussien sur des coupes cérébrales. A 10, 14 et 18 mois, nous avons démontré une réduction des dépôts vasculaires amyloïdes et des hémorragies en régime DHA par rapport au régime placebo, alors que les dépôts parenchymateux ne sont pas affectés. De plus, nous avons démontré une forte corrélation entre les dépôts amyloïdes vasculaires, les hémorragies et un médiateur pro-inflammatoire lipidique, le 12-HETE. Nous avons ensuite évalué in vitro les effets du peptide Aβ1-40 sur la production de 12-HETE par les cellules musculaires lisses vasculaires. Nous avons démontré que les niveaux d'ARNm de l'enzyme 12-LOX, impliquée dans la synthèse de 12-HETE, était augmenté lorsque les cellules ont été incubées avec du peptide Aβ1-40, suggérant une relation de cause à effet entre les dépôts Aβ et les lipides pro-inflammatoires. Mon travail a de nouveau souligné l'importance de l'inflammation dans la pathogenèse de l'AAC tout en ouvrant une nouvelle voie pour des cibles potentielles dans l'intervention préventive de cette pathologie. / Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA) are characterized by Amyloid β-peptides depositions in the brain and cerebral vasculature respectively. Because DHA-diet is associated with a reduced risk of AD, the main objective of my thesis was to evaluate the impact of a DHA-diet on cerebrovascular and peripheral inflammation and its consequences on parenchymal and vascular Aβ-deposits during aging in a transgenic mouse model of AD/CAA (Tg2576). The Aβ-peptide deposits were detected using an anti-Aβ peptides and hemorrhages were detected with Prussian Blue on brain sections. At 10, 14 and 18 month-old, we demonstrated a reduction of amyloid vascular deposits and hemorrhages under DHA-diet compared to placebo, while parenchymal Aβ-peptides deposits remain unaffected. Moreover, we demonstrated a strong negative correlation between amyloid vascular deposition, hemorrhage and a lipid-derived pro-inflammatory mediator, 12-HETE. We next evaluated the in vitro effects of Aβ1-40-peptide on 12-HETE production by the Vascular Smooth Muscle Cells. We demonstrated that the mRNA level of the 12-LOX enzyme, involved in 12-HETE synthesis, was increased when cells where incubated with Aβ1-40-peptide, suggesting a cause-to-effect relationship between Aβ deposits and pro-inflammatory biolipids. The work carried out during my thesis made it possible to demonstrate DHA protective effect on evolution and consequences of Aβ peptide cerebrovascular accumulation and link it to plasma 12-HETE level. My work emphasized once again the importance of inflammation in AAC pathogenesis while opening up a new pathway for potential targets in the preventive intervention of this pathology.
17

Increased Aβ Production Leads to Intracellular Accumulation of Aβ in Flotillin-1-Positive Endosomes

Rajendran, Lawrence, Knobloch, Marlen, Geiger, Kathrin D., Dienel, Stephanie, Nitsch, Roger, Simons, Kai, Konietzko, Uwe 05 March 2014 (has links) (PDF)
Extracellular accumulation of Aβ in β-amyloid plaques is thought to be associated with the neurodegeneration observed in Alzheimer’s disease (AD) patients, although a lack of correlation with cognitive decline raised doubts on this hypothesis. In different transgenic mouse models Aβ accumulates inside the cells and mice develop behavioral deficits well before visible extracellular β-amyloid accumulation. Here we show that intracellular Aβ accumulates in flotillin-1 positive endocytic vesicles. We also demonstrate that flotillin-1 is not only associated with intracellular Aβ in transgenic mice but also with extracellular β-amyloid plaques in AD patient brain sections. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
18

Plasticité de la transmission synaptique dans l’hippocampe et excitabilité intrinsèque dans un modèle murin de la maladie d’Alzheimer / Plasticity of hippocampal synaptic transmission and intrinsic excitability in a mouse model of Alzheimer’s disease

Jiang, Nan 17 September 2019 (has links)
La maladie d'Azheimer (MA) est une pathologie neurodégénérative qui est liée dans ses stades précoces à un dysfonctionnement synaptique et une perte de synapses. De nombreuses données cliniques obtenues chez des patients mais également des données expérimentales obtenues sur des modèles murins de la MA montrent qu'il existe un dimorphisme sexuel s'exprimant par un dépôt de plaques amyloïdes supérieur et une apparition précoce de troubles mnésiques chez les souris femelles par rapport aux souris mâles. Dans ce travail, nous avons étudié les altérations moléculaires et cellulaires de la MA ainsi que les déficits cognitifs associés chez la souris femelle APP/PS1, un modèle murin double transgénique de la MA. En parallèle nous avons étudié les altérations de la transmission et de la plasticité synaptique dans le stratum moleculare, une couche proche du gyrus dentelé (DG) en raison de la forte densité de plaques amyloïdes dans cette région de l'hippocampe.Nous avons mis en évidence la présence de nombreuses plaques amyloïdes dans le DG en quantité supérieure chez les femelles âgées de 6 mois par rapport aux mâles du même âge ainsi qu'une forte activation des cellules gliales astrocytes et microglie. Ces altérations moléculaires et cellulaires s'accompagnent de déficits mnésiques hippocampo-dépendants (test du comportement de peur conditionné et test de la nouvelle localisation spatiale d'un objet) dès l'âge de 4 mois chez les femelles alors que les mâles ne présentent aucun déficit jusqu'à l'âge de 12 mois.Nous avons alors étudié les propriétés électriques des neurones du gyrus dentelé (DG), la transmission et la plasticité de la synapse voie perforante - neurones du gyrus dentelé (synapse PP-DG) chez la souris femelle âgée de 6 mois en comparant les deux génotypes APP/PS1 vs sauvage.Les neurones du DG présentent deux populations distinctes en terme de résistance d'entrée et de patron de décharge de potentiels d'action (PAs). A l'inverse, le potentiel membranaire de repos, la résistance d'entrée, le seuil d'activation et l'amplitude du potentiel d'action ne sont pas modifiés chez la souris APP/PS1 vs la souris sauvage. La fréquence de décharge des potentiels d'action est augmentée chez la souris APP/PS1 sans que la probabilité de décharge en fonction de la pente du pied du potentiel d'action (courbe E-S) soit différente entre la souris APP/PS1 et la souris sauvage. La transmission basale à la synapse PP-DG est modifiée chez la souris APP/PS1 vs la souris sauvage sans altérations du ratio AMPA/NMDA ni de l'index de rectification AMPA. La fréquence des courants miniatures NMDA est augmentée dans les neurones DG de la souris APP/PS1 vs la souris sauvage ce qui suggère le démasquage de synapses silencieuses qui n'expriment peu ou pas de récepteurs AMPA. La potentialisation à long terme (PLT) de l'amplitude des potentiels d'action synchrone est diminuée d'environ 50% chez la souris APP/PS1. La diminution de la PLT observée chez la souris APP/PS1 est en partie liée à des altérations des propriétés intrinsèques des neurones du DG comme le montre le déplacement des courbes E-S induit par la PLT qui traduit une augmentation d'excitabilité de la souris APP/PS1.En conclusion nos résultats montrent un dimorphisme sexuel important avec un dépôt des plaques amyloïdes et une activation neuroinflammatoire des cellules gliales plus précoce chez la souris femelle vs mâle. En parallèle, des déficits importants de la mémoire hippocampale-dépendante sont observés ainsi que des altérations de la transmission et de la plasticité synaptique à la synapse voie perforante - neurones du gyrus dentelé, une synapse clé de l'intégration des informations mnésiques en provenance du cortex enthorhinal. / Azheimer's disease (AD) is a neurodegenerative disease that is linked in its early stage to synaptic dysfunction and loss of synapses. Numerous clinical data obtained from patients but also experimental data obtained on mouse models of AD show that there is a sexual dimorphism evidenced by a higher amyloid plaque deposition and an early onset of memory disorders in female mice compared to male mice.In this work, we investigated the molecular and cellular alterations of AD as well as the associated cognitive deficits in female APP/PS1 mice, a double transgenic murine model of AD. In parallel we studied the alterations of hippocampal synaptic transmission and plasticity in the stratum moleculare, a layer in the vicinity of the dentate gyrus (DG) which specifically displayed a high density of amyloid plaques. We showed the presence of numerous amyloid plaques in the DG in a larger amount in 6 month old females compared to age-matched males as well as a strong activation of astrocyte and microglia glial cells. These molecular and cellular alterations are accompanied by hippocampo-dependent memory deficits (contextual fear conditioning and novel object place recognition task) from the age of 4 months in females whereas males have no deficit until the age of 12 months. We then studied the electrical properties of DG neurons, the transmission and the plasticity of the perforant pathway - DG neurons (PP-DG synapse) in the 6-month old female mouse by comparing the two genotypes APP/PS1 vs wild type (WT).In both genotypes, DG neurons displayed two distinct populations in terms of input resistance and action potential discharge pattern (APs). In contrast, the resting membrane potential, the input resistance, the activation threshold and the amplitude PAs were not modified in APP/PS1 vs WT. The frequency of discharge of APs was increased in APP/PS1 without shift of E-S curve which relates EPSP-slopes to the associated AP firing probability.Basal transmission at the PP-DG synapse was altered in the APP/PS1 mouse vs WT without alterations in the AMPA/NMDA ratio or the AMPA rectification index. The frequency of the NMDA miniature currents was increased in APP/PS1 DG neurons vs WT which suggests the unmasking of silent synapses that express almost no AMPA receptors. The long term potentiation (LTP) of population spike amplitude was decreased by approximately 50% in APP/PS1 mice. The decrease in LTP observed in APP/PS1 was partly related to alterations in the intrinsic properties of DG neurons as evidenced by LTP-induced shifts of E-S curves, which reflects an increased excitability for APP/PS1 mice.In conclusion our results show a prominent sexual dimorphism with much earlier amyloid plaque deposition, neuroinflammatory glial activation in female vs male APP/PS1. In parallel, significant deficits in hippocampal-dependent memory are observed as well as alterations of synaptic transmission and plasticity at the PP-DG synapse, a key synapse of the integration of mnesic informations originated from the entorhinal cortex
19

Pathologische Veränderungen im Thalamus in einem Tiermodell für die Alzheimer-Krankheit

Flohr, Johann-Christian Antonius 11 October 2010 (has links)
No description available.
20

Interaction du peptide Aβ1-42 et mutants avec des membranes modèles : de l'échelle micrométrique à l'échelle nanométrique / Aβ1-42 and variants interaction with membrane models : from micrometer scale to nanometer scale

Henry, Sarah 19 November 2015 (has links)
La maladie d'Alzheimer, maladie neurodégénérative la plus courante, est la cause de50% des cas de démence. La maladie d’Alzheimer est provoquée par l'agrégation d'unamyloïde, le peptide Aβ1-42, dans le cerveau des patients.De nombreuses études relient la toxicité des amyloïdes à l'existence de diversesstructures intermédiaires survenant avant la formation des fibres et / ou leur interactionspécifique avec les membranes.Dans cette étude, nous nous sommes centrés sur l'interaction entre des modèlesmembranaires et le peptide Aβ1-42 (WT et des mutants plus ou moins toxiques) évaluée parplusieurs techniques biophysiques (ellipsométrie, PM-IRRAS, fluorescence de la ThT, fuitede calcéine, PWR, cryo-MET). Nous avons tout d'abord étudié l’interaction avec des modèlesde membrane simples (100% DOPG ou 100% DOPC). Nous avons établi que la force motricede l'interaction entre tous les peptides et la membrane n’est pas régie par des interactionsélectrostatiques, mais est favorisée en présence des têtes polaires PG qui peuvent interagiravec le peptide par l'intermédiaire de liaisons hydrogènes. Nous avons démontré quel'oligomère le plus toxique induit des dommages sur les membranes de PG, ce qui diminue laformation de fibres.Une nouvelle composition lipidique constituée de GM1, cholestérol, sphingomyélineet POPC a été choisie pour mimer les membranes neuronales. Des techniques innovantes : laspectroscopie infrarouge à l'échelle nanométrique et l’AFM haute-vitesse ont été utilisées,respectivement, pour accéder à la morphologie et la structure secondaire des peptides enprésence de membranes et observer la dynamique de cette interaction. Les résultats obtenusmontrent que les gangliosides GM1 et le cholestérol jouent un rôle central dans l'interactiond’Aβ avec les membranes. Nous avons été en mesure de proposer un modèle du mécanismed'interaction : Aβ1-42 s’accumule sur les domaines de GM1 présents dans la membrane via desliaisons hydrogène, puis s’insère dans la membrane par les domaines enrichis en cholestérol.Le cholestérol et les gangliosides sont nécessaires pour l'interaction d’Aβ1-42 avec lamembrane.Afin de suivre la cinétique d'agrégation d’Aβ et de comprendre ses différents étatsd'agrégation par spectroscopie infrarouge, l’élaboration d’une cellule microfluidique adaptée aété entreprise. / Alzheimer’s disease is the most common neurodegenerative disease, leading to 50% ofdementia cases, caused by the aggregation of an amyloid, the Aβ1-42 peptide in patients brain.Many studies link the toxicity of amyloids, as A1-42 involved in Alzheimer disease, tothe existence of various intermediate structures prior to fiber formation and /or their specificinteraction with membranes.In this study we focused on the interaction between membrane models and A1-42peptides and variants more or less toxic with several biophysical techniques (ellipsometry,PM-IRRAS, ThT fluorescence, calceine leakage, PWR, cryo-TEM). First, with simplemembrane models (pure DOPG or pure DOPC), we established that the driving force for theinteraction between all the peptides and membrane is not governed by electrostatic interactionbut is favored in presence of PG headgroups that may interact with peptide via hydrogenbonding. We demonstrated that the most toxic oligomer induces PG membrane damage,decreasing the formation of fibers.New lipid composition GM1, cholesterol, sphingomyelin and POPC has been chosento mimic neuronal membranes. Innovative techniques: as nanoscale infrared spectroscopy andhigh-speed AFM were used to assess to the morphology and the secondary structure of thepeptides in presence of membrane and to observe the dynamic of this interaction,respectively. The results obtained show that the gangliosides GM1 and the cholesterol play acentral role in the interaction of Aβ with membranes. We were able to propose a model of theinteraction mechanism: Aβ1-42 firstly accumulates on the GM1 domains present in themembrane via hydrogen bonding and then inserts the membrane in the cholesterol enricheddomains. Cholesterol and gangliosides are required for the interaction of Aβ1-42 withmembrane.In order to follow the kinetic of Aβ agregation and understand its different agregationstates with infrared spectroscopy, a microfluidic cell fabrication has been investigated.

Page generated in 0.016 seconds