• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 3
  • Tagged with
  • 12
  • 12
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudos por simulação molecular de sistemas peptídeos/bicamadas lipídicas: aplicação à relação estrutura atividade antibacteriana da indolicidina e de mutantes / Molecular simulation studies of peptide/bilayer systems: application to structure/activity relationship of the indolicidin and mutants.

Fuzo, Carlos Alessandro 07 May 2009 (has links)
Interações de peptídeos antimicrobianos com modelos de membranas biológicas têm sido extensivamente estudadas para entender as funções destes peptídeos e para elucidar seus mecanismos de ação. Muitos esforços têm sido realizados para aumentar a potência e a especificidade desses peptídeos com o propósito de serem mais seletivos aos organismos patogênicos do que às células dos hospedeiros, como também para um melhor entendimento desta classe de processo biológico. Os mecanismos geralmente propostos para a atividade antimicrobiana envolvem a permeabilização das membranas celulares pela formação de poros ou por outras mudanças nas membranas. Um ponto fundamental no entendimento da atividade é que a composição de lipídeos das membranas dos patógenos e dos hospedeiros é diferente, observação que é entendida como a chave principal da seletividade dos peptídeos antimicrobianos. O objetivo do presente trabalho é contribuir para o entendimento da ação de peptídeos antimicrobianos pelo estudo, por simulação molecular, do peptídeo antimicrobiano indolicidina e de alguns de seus mutantes. A indolicidina é um peptídeo constituído por 13 resíduos de aminoácidos que foi isolada dos neutrófilos de bovinos cuja função é ingerir e matar bactérias. Apesar de numerosos estudos experimentais, não se sabe ainda como a indolicidina atua. Este conhecimento é importante tanto no entendimento dos processos de defesa dos organismos multicelulares como no desenvolvimento de novos antibióticos. Estas questões foram abordadas através do estudo do comportamento da indolicidina e de alguns dos seus mutantes em solução aquosa e em interação com modelos de membranas celulares. / Interactions of the antimicrobial peptides with biological membrane models have been broadly studied to understand the function and the action mechanism of this class of peptides. Many efforts have been realized to increase the potency and the specificity of these peptides with the purpose of obtain more selective pathogen antimicrobials with decrease of the toxic effects and for a better explanation of the biological process concerned in the peptide action. The action mechanism approached to antimicrobial peptides concern the cellular membrane permeation by pore formation or other type of membrane disruption. A fundamental point in the knowledge of the activity is the distinct lipid composition of pathogen and host cells that is conceived as the principal key point in the selectivity of the antimicrobial peptides. The aim of the present work is to contribute for the knowledge of the action of the antimicrobial peptide indolicidin and some of its mutants by molecular dynamics simulation. The indolicidin is a short 13 amino acid residues antimicrobial peptide that was isolated from bovine neutrofils that have the function of ingest and kill pathogens. The action mechanism of the indolicidin is not yet known despite of numerous experimental studies realized with this peptide. The interaction of the indolicidin with the membrane models is important both for the knowledge of the defense machinery of the live organisms and for the development of new antimicrobials. These questions were approached by the study of the indolicidin and some of its mutants in solution and in interaction with cell membrane models.
2

Efeito de características estruturais da quitosana sobre sua interação com filmes de Langmuir como modelo de biomembrana / Effects from the structural characteristics of chitosan on its interaction in Langmuir films as biomembrane models.

Pavinatto, Adriana 22 February 2010 (has links)
As quitosanas são polissacarídeos usados em medicina, farmácia, odontologia e na inibição do crescimento de microrganismos, como agente bactericida. Nessas aplicações sua ação deve depender da interação com membranas celulares, o que é difícil de verificar uma vez que não se isola uma membrana facilmente. Uma alternativa é investigar a interação com modelos de membrana, como um filme de Langmuir de fosfolipídios, a partir do qual é possível obter informações no nível molecular. Nesta dissertação, é avaliada a influência do conteúdo médio de unidades N-acetilglucosamina (GlcNAc) de quitosanas e da massa molecular na interação com filmes de Langmuir do ácido fosfatídico de dipalmitoíla (DMPA). Quitosanas com diferentes graus médios de acetilação e de baixa massa molecular foram produzidas com auxílio de ultrassom de alta intensidade. As quitosanas afetam as isotermas de pressão e potencial de superfície em grandes áreas por molécula, em virtude de interações eletrostáticas e hidrofóbicas com o DMPA. Nos filmes condensados, localizam-se na subsuperfície, com pouco efeito nas isotermas. A quitosana com menos grupos GlcNAc induziu alterações maiores nas isotermas de pressão de superfície e na elasticidade dos filmes, provavelmente devido à maior interação eletrostática com um número maior de grupos amina na quitosana interagindo com as cabeças polares do DMPA. A quitosana com baixa massa molecular foi a mais eficaz para alterar as propriedades dos filmes de DMPA, o que pode ser atribuído à facilidade na adsorção. Um tamanho mínimo de cadeia parece ser essencial, entretanto, pois misturas das unidades repetitivas N-acetilglucosamina (GlcNAc) e glucosamina (GlcN) praticamente não alteraram as isotermas de pressão e a elasticidade dos filmes de DMPA, pela ausência de interações hidrofóbicas. Concluímos que quitosanas com grau de acetilação e massa molecular baixos têm efeitos maiores sobre um modelo de membrana e devem ser mais adequadas em aplicações biológicas que dependam dessa interação. / Chitosans are polysaccharides used in medicine, pharmacy, dentistry and in the inhibition of microorganisms growth (eg. as bactericidal agent). In these applications their action should depend on the interaction with cell membranes, which is difficult to verify because isolating a membrane is not easy. An alternative is to investigate the interaction with membrane models, such as a Langmuir film of phospholipids, from which information on the molecular level can be obtained. This dissertation evaluates the influence of the average content of N-acetylglucosamine units (GlcNAc) of chitosan and molecular interaction with Langmuir films of dipalmitoyl phosphatidic acid (DMPA). Chitosans with different average degrees of acetylation and low molecular weight were produced with the high-intensity ultrasound procedure. Chitosans affect the surface pressure and surface potential isotherms at large areas per molecule due to electrostatic and hydrophobic interactions with DMPA. In condensed films, they are located in the subsurface with little effect on the isotherms. The chitosan with fewer GLcNAc groups induced larger changes in the isotherms and in the film elasticity, probably due to stronger electrostatic interaction owing to a larger number of amine groups in chitosan interacting with the polar heads of DMPA. The most effective sample to induce changes in the DMPA monolayers was the low molecular weight chitosan, which can be attributed to the ease of adsorption. A minimum size chain seems essential, however, for mixtures of repeating units N-acetylglucosamine (GlcNAc) and glucosamine (GlcN) did not change the surface pressure isotherms and the elasticity of the DMPA films, owing to the absence of hydrophobic interactions. We conclude that the chitosan with better prospects for biological applications relying on the cell membrane interaction should have a low degree of acetylation and low molecular weight.
3

Estudos por simulação molecular de sistemas peptídeos/bicamadas lipídicas: aplicação à relação estrutura atividade antibacteriana da indolicidina e de mutantes / Molecular simulation studies of peptide/bilayer systems: application to structure/activity relationship of the indolicidin and mutants.

Carlos Alessandro Fuzo 07 May 2009 (has links)
Interações de peptídeos antimicrobianos com modelos de membranas biológicas têm sido extensivamente estudadas para entender as funções destes peptídeos e para elucidar seus mecanismos de ação. Muitos esforços têm sido realizados para aumentar a potência e a especificidade desses peptídeos com o propósito de serem mais seletivos aos organismos patogênicos do que às células dos hospedeiros, como também para um melhor entendimento desta classe de processo biológico. Os mecanismos geralmente propostos para a atividade antimicrobiana envolvem a permeabilização das membranas celulares pela formação de poros ou por outras mudanças nas membranas. Um ponto fundamental no entendimento da atividade é que a composição de lipídeos das membranas dos patógenos e dos hospedeiros é diferente, observação que é entendida como a chave principal da seletividade dos peptídeos antimicrobianos. O objetivo do presente trabalho é contribuir para o entendimento da ação de peptídeos antimicrobianos pelo estudo, por simulação molecular, do peptídeo antimicrobiano indolicidina e de alguns de seus mutantes. A indolicidina é um peptídeo constituído por 13 resíduos de aminoácidos que foi isolada dos neutrófilos de bovinos cuja função é ingerir e matar bactérias. Apesar de numerosos estudos experimentais, não se sabe ainda como a indolicidina atua. Este conhecimento é importante tanto no entendimento dos processos de defesa dos organismos multicelulares como no desenvolvimento de novos antibióticos. Estas questões foram abordadas através do estudo do comportamento da indolicidina e de alguns dos seus mutantes em solução aquosa e em interação com modelos de membranas celulares. / Interactions of the antimicrobial peptides with biological membrane models have been broadly studied to understand the function and the action mechanism of this class of peptides. Many efforts have been realized to increase the potency and the specificity of these peptides with the purpose of obtain more selective pathogen antimicrobials with decrease of the toxic effects and for a better explanation of the biological process concerned in the peptide action. The action mechanism approached to antimicrobial peptides concern the cellular membrane permeation by pore formation or other type of membrane disruption. A fundamental point in the knowledge of the activity is the distinct lipid composition of pathogen and host cells that is conceived as the principal key point in the selectivity of the antimicrobial peptides. The aim of the present work is to contribute for the knowledge of the action of the antimicrobial peptide indolicidin and some of its mutants by molecular dynamics simulation. The indolicidin is a short 13 amino acid residues antimicrobial peptide that was isolated from bovine neutrofils that have the function of ingest and kill pathogens. The action mechanism of the indolicidin is not yet known despite of numerous experimental studies realized with this peptide. The interaction of the indolicidin with the membrane models is important both for the knowledge of the defense machinery of the live organisms and for the development of new antimicrobials. These questions were approached by the study of the indolicidin and some of its mutants in solution and in interaction with cell membrane models.
4

Efeito de características estruturais da quitosana sobre sua interação com filmes de Langmuir como modelo de biomembrana / Effects from the structural characteristics of chitosan on its interaction in Langmuir films as biomembrane models.

Adriana Pavinatto 22 February 2010 (has links)
As quitosanas são polissacarídeos usados em medicina, farmácia, odontologia e na inibição do crescimento de microrganismos, como agente bactericida. Nessas aplicações sua ação deve depender da interação com membranas celulares, o que é difícil de verificar uma vez que não se isola uma membrana facilmente. Uma alternativa é investigar a interação com modelos de membrana, como um filme de Langmuir de fosfolipídios, a partir do qual é possível obter informações no nível molecular. Nesta dissertação, é avaliada a influência do conteúdo médio de unidades N-acetilglucosamina (GlcNAc) de quitosanas e da massa molecular na interação com filmes de Langmuir do ácido fosfatídico de dipalmitoíla (DMPA). Quitosanas com diferentes graus médios de acetilação e de baixa massa molecular foram produzidas com auxílio de ultrassom de alta intensidade. As quitosanas afetam as isotermas de pressão e potencial de superfície em grandes áreas por molécula, em virtude de interações eletrostáticas e hidrofóbicas com o DMPA. Nos filmes condensados, localizam-se na subsuperfície, com pouco efeito nas isotermas. A quitosana com menos grupos GlcNAc induziu alterações maiores nas isotermas de pressão de superfície e na elasticidade dos filmes, provavelmente devido à maior interação eletrostática com um número maior de grupos amina na quitosana interagindo com as cabeças polares do DMPA. A quitosana com baixa massa molecular foi a mais eficaz para alterar as propriedades dos filmes de DMPA, o que pode ser atribuído à facilidade na adsorção. Um tamanho mínimo de cadeia parece ser essencial, entretanto, pois misturas das unidades repetitivas N-acetilglucosamina (GlcNAc) e glucosamina (GlcN) praticamente não alteraram as isotermas de pressão e a elasticidade dos filmes de DMPA, pela ausência de interações hidrofóbicas. Concluímos que quitosanas com grau de acetilação e massa molecular baixos têm efeitos maiores sobre um modelo de membrana e devem ser mais adequadas em aplicações biológicas que dependam dessa interação. / Chitosans are polysaccharides used in medicine, pharmacy, dentistry and in the inhibition of microorganisms growth (eg. as bactericidal agent). In these applications their action should depend on the interaction with cell membranes, which is difficult to verify because isolating a membrane is not easy. An alternative is to investigate the interaction with membrane models, such as a Langmuir film of phospholipids, from which information on the molecular level can be obtained. This dissertation evaluates the influence of the average content of N-acetylglucosamine units (GlcNAc) of chitosan and molecular interaction with Langmuir films of dipalmitoyl phosphatidic acid (DMPA). Chitosans with different average degrees of acetylation and low molecular weight were produced with the high-intensity ultrasound procedure. Chitosans affect the surface pressure and surface potential isotherms at large areas per molecule due to electrostatic and hydrophobic interactions with DMPA. In condensed films, they are located in the subsurface with little effect on the isotherms. The chitosan with fewer GLcNAc groups induced larger changes in the isotherms and in the film elasticity, probably due to stronger electrostatic interaction owing to a larger number of amine groups in chitosan interacting with the polar heads of DMPA. The most effective sample to induce changes in the DMPA monolayers was the low molecular weight chitosan, which can be attributed to the ease of adsorption. A minimum size chain seems essential, however, for mixtures of repeating units N-acetylglucosamine (GlcNAc) and glucosamine (GlcN) did not change the surface pressure isotherms and the elasticity of the DMPA films, owing to the absence of hydrophobic interactions. We conclude that the chitosan with better prospects for biological applications relying on the cell membrane interaction should have a low degree of acetylation and low molecular weight.
5

Composés macrocycliques bioactifs : synthèse et étude de leurs interactions avec des membranes biologiques modèles / Bioactive macrocyclic compounds : syntheses and study of their interactions with biological membrane models

Sautrey, Guillaume 09 December 2011 (has links)
Le travail suivant est consacré d'une part à l'emploi du calix[4]arène comme une plate-forme organisatrice de principes actifs pour la conception de nouvelles prodrogues. Ce concept a été développé avec des substances antibactériennes ou antivirales, choisies comme modèles. Les conjugués calixarène - anti-infectieux ainsi synthétisés sont amphiphiles et insolubles dans l'eau. Leur comportement interfacial a été étudié via l'interface eau-air, mime d'une interface hydrophile-hydrophobe physiologique, à l'aide de la technique des films monomoléculaires de Langmuir. Nos résultats indiquent que ces prodrogues étalées à l'interface eau-air peuvent libérer leurs principes actifs dans la sous-phase. La méthodologie développée pour ces études de réactivité interfaciale pourrait à l'avenir être appliquée à d'autres prodrogues à base de calix[4]arène. Un second projet a concerné le trifluoroacétate de tétra-p-(guanidinoéthyl)-calix[4]arène (CX1). Ce composé présente des propriétés antibactériennes à large spectre, couplées à une faible toxicité cellulaire. Nos travaux ont visé à mieux comprendre son mode d'action, lié à une perturbation des parois bactériennes, par une approche physico-chimique. La technique de Langmuir a donc été employée afin d'étudier les interactions entre le CX1 et des films monomoléculaires de phospholipides étalés à l'interface eau-air, utilisés comme modèles de membrane bactérienne. Nos résultats nous ont permis de proposer un mode d'organisation des membranes bactériennes sous l'influence du CX1. Nous avons ainsi apporté des précisions sur son mécanisme d'action qui pourraient être utiles dans le développement de nouveaux calixarènes antibactériens / This work begins with utilization of the calix[4]arene macrocycle as organizing platform of anti-infectious molecules shaped as prodrug. The concept has been explored using antibacterial (nalidixic acid) and antiviral (aciclovir, ganciclovir) molecules, chosen as models. The calixarene - anti-infectious conjugates synthesized have amphiphilic structure and are insoluble in aqueous media. Their interfacial behavior was studied via the air-water interface, considered as mimic of biological hydrophilic-hydrophobic interfaces, using Langmuir monolayers technique. Our results indicate that calixarene-based prodrugs spread at the air-water interface are able to release anti-infectious molecules into the subphase. The original methodology employed for interfacial reactivity studies could be applied to further calixarene-based prodrugs. A second project concerns the trifluoroacetate salt of tetra-p-(guanidinoethyl)-calix[4]arene (CX1). CX1 is antibacterial, active against various Gram-positive and Gram-negative bacteria, with low eukaryotic cell toxicity. The aim of our work was to get more insight in the mechanism of action of CX1, involving bacterial wall disruption, by a physico-chemical approach. The Langmuir monolayers technique was employed in order to study interactions between CX1 and phospholipid monolayers spread at the air-water interface, used as models of bacterial membranes. Our results led us to propose a particular reorganization mode of bacterial membranes upon interactions with CX1. This proposal gives more understanding in the mechanism of biological activity of CX1, and could be helpful in developing new antibacterial calixarene derivatives
6

Estudo da interação de nanomateriais com modelos de membranas celulares e com células-tronco neurais / Interaction of nanomaterials with cell membrane models and with stem cells

Uehara, Thiers Massami 19 September 2014 (has links)
O desenvolvimento da nanociência e nanotecnologia promoveu uma nova fronteira no estudo da matéria, permitindo que materiais já conhecidos tivessem suas propriedades redescobertas ao serem manipulados em nível molecular. Vários materiais vêm apresentando relevância na nanociência e nanotecnologia, como os nanotubos de carbono (CNTs), nanopartículas (NPs) e óxido de grafeno, uma vez que os CNTs e óxido de grafeno são dotados de propriedades mecânicas, térmicas e elétricas que os tornam apropriados para o desenvolvimento e a aplicação em dispositivos, especialmente na área biotecnológica e de sensores. Diversas áreas se beneficiam com o uso da tecnologia em nanopartículas (NPs), por exemplo: alimentícia, médica, agronegócio, cosmética, etc. Uma possível perspectiva na utilização desses nanomateriais em sistemas biológicos torna muito interessante investigar como tais materiais interagem em nível molecular com modelos de membranas celulares e com células. Esta tese tem como objetivos: i) investigar detalhadamente a interação entre nanopartículas (Fe3O4/Dextran; Fe3O4/PDAC; PDAC; Dextran) e nanotubos de carbono com modelos de membranas celulares; e ii) desenvolver nanofibras poliméricas pela técnica de electrospinning para ser utilizada com óxido de grafeno como modelos mimetizados (scaffolds) para a diferenciação de células-tronco neurais. Os filmes ultrafinos foram fabricados utilizando as técnicas de Langmuir e Langmuir-Blodgett. Esses nanomateriais foram avaliados através da técnica de Espectroscopia vibracional por Geração de Soma de Frequências. A espectroscopia SFG é sensível a interfaces. Nanofibras de Poli(ε-Caprolactone) foram fabricadas pela técnica de electrospinning. Scaffolds com óxido de grafeno/Nanofibras de Poli(ε-Caprolactone) foram desenvolvidos como suportes sólidos para a diferenciação de células-tronco neurais de rato. Óxido de grafeno em diferentes concentrações foi incorporado nas nanofibras poliméricas. Os modelos deste sistema foram investigados por imagens de Microscopia Eletrônica de Varredura. Os resultados mostraram que a carga eletrostática de cada fosfolipídio utilizado pode influenciar nas interações com os nanomateriais (nanopartículas ou nanotubos de carbono), podendo resultar em uma desestruturação no modelo de membrana celular. Scaffolds contendo nanofibras de Poli(ε-Caprolactone) com óxido de grafeno representaram um eficiente modelo mimetizado para a interação/diferenciação de células-tronco neurais de rato conforme revelado por imagens de Microscopia Eletrônica de Varredura. Estas imagens mostraram que o sistema de nanofibras de Poli(ε-Caprolactone) com 1,0 mg/mL de óxido de grafeno foram ideais para a diferenciação de oligodendrócitos em células-tronco neurais de rato. / The development of nanoscience and nanotechnology promoted a new frontier on the study of matter, allowing conventional materials to exhibit novel or improved properties. Several materials show relevance in nanoscience and nanotechnology, such as carbon nanotubes (CNTs), nanoparticles (NPs) and graphene oxide. CNTs and graphene oxide, for example, exhibit unique mechanical, thermal and electrical properties, which make them appropriate to the development and application in devices, especially in biotechnology and sensors areas. Many areas are benefited from the use of nanoparticles (NPs), such as food, medical, agrobusiness, cosmetic etc. The perspective regarding the use of nanomaterials in biological systems requires the understanding on how these materials interact at the molecular level with cell membrane models and with cells. The objectives of this thesis are: i) to investigate the interaction between nanoparticles (Fe3O4/Dextran; Fe3O4/PDAC; PDAC; Dextran) and carbon nanotubes with cell membrane models; and ii) to develop polymeric nanofibers via electrospinning technique, to be used with graphene oxide as mimic models (scaffolds) in the differentiation of neural stem cells. The cell membrane models were manufactured using Langmuir and Langmuir-Blodgett techniques. These nanomaterials were evaluated through Sum Frequency Vibrational Spectrosocopy (SFG). Poly(ε-Caprolactone) nanofibers were manufactured by electrospinning technique. Scaffolds with graphene oxide/Poly(ε-Caprolactone) were developed as solid supports for differentiation of rats neural stem cells. This biosystem was investigated via Scanning Electron Microscopy and biochemical essays. The results showed that the charge of each phospholipid influenced the interactions with the nanomaterials (nanoparticles or carbon nanotubes), in some cases, resulting in a disruption of the cell membrane model. Scaffolds with Poly(ε-Caprolactone) nanofibers obtained via electrospinning with graphene oxide represented an efficient mimic model for interaction/differentiation of neural stem cells as shown via Scanning Electron Microscopy. The images revealed that the PCL nanofibers system with 1.0 mg/mL of graphene oxide were ideal to the differentiation of oligodendrocytes in neural stem cells.
7

Classical and Quantum Descriptions of Proteins, Lipids and Membranes

Tjörnhammar, Richard January 2014 (has links)
In this thesis the properties of proteins and membranes are studied by molecular dynamics simulations. The subject is decomposed into parts addressing free energy calculations in proteins, mechanical inclusion models for lipid bilayers, phase transitions and structural correlations in lipid bilayers and atomistic lipid bilayer models. The work is based on results from large scale computer simulations, quantum mechanical and continuum models. Efficient statistical sampling and the coarseness of the models needed to describe the ordered and disordered states are of central concern. Classical free energy calculations of zinc binding, in metalloproteins, require a quantum mechanical correction in order to obtain realistic binding energies. Classical electrostatic polarisation will influence the binding energy in a large region surrounding the ion and produce reasonable equilibrium structures in the bound state, when compared to experimental evidence. The free energy for inserting a protein into a membrane is calculated with continuum theory. The free energy is assumed quadratic in the mismatch and depend on two elastic constants of the membrane. Under these circumstances, the free energy can then be written as a line tension multiplied by the circumference of the membrane inclusion. The inclusion model and coarse grained particle simulations of the membranes show that the thickness profile around the protein will be an exponentially damped oscillation. Coarse-grained particle simulations of model membranes containing mixtures of phospholipid and cholesterol molecules at different conditions were performed. The gel-to-liquid crystalline phase transition is successively weakened with increasing amounts of cholesterol without disappearing even at a concentration of cholesterol as high as 60%. A united atom parameterization of diacyl lipids was constructed. The aim was to construct a new force field that retains and improves the good agreement for the fluid phase and at the same time produces a gel phase at low temperatures, with properties coherent with experimental findings. The global bilayer tilt obtains an azimuthal value of 31◦ and is aligned between lattice vectors in the bilayer plane. It is also shown that the model yield a correct heat of melting as well as heat capacities in the fluid and gel phase of DPPC. / <p>QC 20140919</p>
8

Estudo da interação de nanomateriais com modelos de membranas celulares e com células-tronco neurais / Interaction of nanomaterials with cell membrane models and with stem cells

Thiers Massami Uehara 19 September 2014 (has links)
O desenvolvimento da nanociência e nanotecnologia promoveu uma nova fronteira no estudo da matéria, permitindo que materiais já conhecidos tivessem suas propriedades redescobertas ao serem manipulados em nível molecular. Vários materiais vêm apresentando relevância na nanociência e nanotecnologia, como os nanotubos de carbono (CNTs), nanopartículas (NPs) e óxido de grafeno, uma vez que os CNTs e óxido de grafeno são dotados de propriedades mecânicas, térmicas e elétricas que os tornam apropriados para o desenvolvimento e a aplicação em dispositivos, especialmente na área biotecnológica e de sensores. Diversas áreas se beneficiam com o uso da tecnologia em nanopartículas (NPs), por exemplo: alimentícia, médica, agronegócio, cosmética, etc. Uma possível perspectiva na utilização desses nanomateriais em sistemas biológicos torna muito interessante investigar como tais materiais interagem em nível molecular com modelos de membranas celulares e com células. Esta tese tem como objetivos: i) investigar detalhadamente a interação entre nanopartículas (Fe3O4/Dextran; Fe3O4/PDAC; PDAC; Dextran) e nanotubos de carbono com modelos de membranas celulares; e ii) desenvolver nanofibras poliméricas pela técnica de electrospinning para ser utilizada com óxido de grafeno como modelos mimetizados (scaffolds) para a diferenciação de células-tronco neurais. Os filmes ultrafinos foram fabricados utilizando as técnicas de Langmuir e Langmuir-Blodgett. Esses nanomateriais foram avaliados através da técnica de Espectroscopia vibracional por Geração de Soma de Frequências. A espectroscopia SFG é sensível a interfaces. Nanofibras de Poli(&#949;-Caprolactone) foram fabricadas pela técnica de electrospinning. Scaffolds com óxido de grafeno/Nanofibras de Poli(&#949;-Caprolactone) foram desenvolvidos como suportes sólidos para a diferenciação de células-tronco neurais de rato. Óxido de grafeno em diferentes concentrações foi incorporado nas nanofibras poliméricas. Os modelos deste sistema foram investigados por imagens de Microscopia Eletrônica de Varredura. Os resultados mostraram que a carga eletrostática de cada fosfolipídio utilizado pode influenciar nas interações com os nanomateriais (nanopartículas ou nanotubos de carbono), podendo resultar em uma desestruturação no modelo de membrana celular. Scaffolds contendo nanofibras de Poli(&#949;-Caprolactone) com óxido de grafeno representaram um eficiente modelo mimetizado para a interação/diferenciação de células-tronco neurais de rato conforme revelado por imagens de Microscopia Eletrônica de Varredura. Estas imagens mostraram que o sistema de nanofibras de Poli(&#949;-Caprolactone) com 1,0 mg/mL de óxido de grafeno foram ideais para a diferenciação de oligodendrócitos em células-tronco neurais de rato. / The development of nanoscience and nanotechnology promoted a new frontier on the study of matter, allowing conventional materials to exhibit novel or improved properties. Several materials show relevance in nanoscience and nanotechnology, such as carbon nanotubes (CNTs), nanoparticles (NPs) and graphene oxide. CNTs and graphene oxide, for example, exhibit unique mechanical, thermal and electrical properties, which make them appropriate to the development and application in devices, especially in biotechnology and sensors areas. Many areas are benefited from the use of nanoparticles (NPs), such as food, medical, agrobusiness, cosmetic etc. The perspective regarding the use of nanomaterials in biological systems requires the understanding on how these materials interact at the molecular level with cell membrane models and with cells. The objectives of this thesis are: i) to investigate the interaction between nanoparticles (Fe3O4/Dextran; Fe3O4/PDAC; PDAC; Dextran) and carbon nanotubes with cell membrane models; and ii) to develop polymeric nanofibers via electrospinning technique, to be used with graphene oxide as mimic models (scaffolds) in the differentiation of neural stem cells. The cell membrane models were manufactured using Langmuir and Langmuir-Blodgett techniques. These nanomaterials were evaluated through Sum Frequency Vibrational Spectrosocopy (SFG). Poly(&#949;-Caprolactone) nanofibers were manufactured by electrospinning technique. Scaffolds with graphene oxide/Poly(&#949;-Caprolactone) were developed as solid supports for differentiation of rats neural stem cells. This biosystem was investigated via Scanning Electron Microscopy and biochemical essays. The results showed that the charge of each phospholipid influenced the interactions with the nanomaterials (nanoparticles or carbon nanotubes), in some cases, resulting in a disruption of the cell membrane model. Scaffolds with Poly(&#949;-Caprolactone) nanofibers obtained via electrospinning with graphene oxide represented an efficient mimic model for interaction/differentiation of neural stem cells as shown via Scanning Electron Microscopy. The images revealed that the PCL nanofibers system with 1.0 mg/mL of graphene oxide were ideal to the differentiation of oligodendrocytes in neural stem cells.
9

Interaction du peptide Aβ1-42 et mutants avec des membranes modèles : de l'échelle micrométrique à l'échelle nanométrique / Aβ1-42 and variants interaction with membrane models : from micrometer scale to nanometer scale

Henry, Sarah 19 November 2015 (has links)
La maladie d'Alzheimer, maladie neurodégénérative la plus courante, est la cause de50% des cas de démence. La maladie d’Alzheimer est provoquée par l'agrégation d'unamyloïde, le peptide Aβ1-42, dans le cerveau des patients.De nombreuses études relient la toxicité des amyloïdes à l'existence de diversesstructures intermédiaires survenant avant la formation des fibres et / ou leur interactionspécifique avec les membranes.Dans cette étude, nous nous sommes centrés sur l'interaction entre des modèlesmembranaires et le peptide Aβ1-42 (WT et des mutants plus ou moins toxiques) évaluée parplusieurs techniques biophysiques (ellipsométrie, PM-IRRAS, fluorescence de la ThT, fuitede calcéine, PWR, cryo-MET). Nous avons tout d'abord étudié l’interaction avec des modèlesde membrane simples (100% DOPG ou 100% DOPC). Nous avons établi que la force motricede l'interaction entre tous les peptides et la membrane n’est pas régie par des interactionsélectrostatiques, mais est favorisée en présence des têtes polaires PG qui peuvent interagiravec le peptide par l'intermédiaire de liaisons hydrogènes. Nous avons démontré quel'oligomère le plus toxique induit des dommages sur les membranes de PG, ce qui diminue laformation de fibres.Une nouvelle composition lipidique constituée de GM1, cholestérol, sphingomyélineet POPC a été choisie pour mimer les membranes neuronales. Des techniques innovantes : laspectroscopie infrarouge à l'échelle nanométrique et l’AFM haute-vitesse ont été utilisées,respectivement, pour accéder à la morphologie et la structure secondaire des peptides enprésence de membranes et observer la dynamique de cette interaction. Les résultats obtenusmontrent que les gangliosides GM1 et le cholestérol jouent un rôle central dans l'interactiond’Aβ avec les membranes. Nous avons été en mesure de proposer un modèle du mécanismed'interaction : Aβ1-42 s’accumule sur les domaines de GM1 présents dans la membrane via desliaisons hydrogène, puis s’insère dans la membrane par les domaines enrichis en cholestérol.Le cholestérol et les gangliosides sont nécessaires pour l'interaction d’Aβ1-42 avec lamembrane.Afin de suivre la cinétique d'agrégation d’Aβ et de comprendre ses différents étatsd'agrégation par spectroscopie infrarouge, l’élaboration d’une cellule microfluidique adaptée aété entreprise. / Alzheimer’s disease is the most common neurodegenerative disease, leading to 50% ofdementia cases, caused by the aggregation of an amyloid, the Aβ1-42 peptide in patients brain.Many studies link the toxicity of amyloids, as A1-42 involved in Alzheimer disease, tothe existence of various intermediate structures prior to fiber formation and /or their specificinteraction with membranes.In this study we focused on the interaction between membrane models and A1-42peptides and variants more or less toxic with several biophysical techniques (ellipsometry,PM-IRRAS, ThT fluorescence, calceine leakage, PWR, cryo-TEM). First, with simplemembrane models (pure DOPG or pure DOPC), we established that the driving force for theinteraction between all the peptides and membrane is not governed by electrostatic interactionbut is favored in presence of PG headgroups that may interact with peptide via hydrogenbonding. We demonstrated that the most toxic oligomer induces PG membrane damage,decreasing the formation of fibers.New lipid composition GM1, cholesterol, sphingomyelin and POPC has been chosento mimic neuronal membranes. Innovative techniques: as nanoscale infrared spectroscopy andhigh-speed AFM were used to assess to the morphology and the secondary structure of thepeptides in presence of membrane and to observe the dynamic of this interaction,respectively. The results obtained show that the gangliosides GM1 and the cholesterol play acentral role in the interaction of Aβ with membranes. We were able to propose a model of theinteraction mechanism: Aβ1-42 firstly accumulates on the GM1 domains present in themembrane via hydrogen bonding and then inserts the membrane in the cholesterol enricheddomains. Cholesterol and gangliosides are required for the interaction of Aβ1-42 withmembrane.In order to follow the kinetic of Aβ agregation and understand its different agregationstates with infrared spectroscopy, a microfluidic cell fabrication has been investigated.
10

The Role of Lipid Domains and Sterol Chemistry in Nanoparticle-Cell Membrane Interactions

Fuhrer, Andrew B. January 2020 (has links)
No description available.

Page generated in 0.0743 seconds