• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

MACROPHAGE AEBP1 CONTRIBUTES TO MAMMARY EPITHELIAL CELL HYPERPLASIA AS A NOVEL REGULATOR OF SONIC HEDGEHOG SIGNALLING

Holloway, Ryan 27 November 2012 (has links)
Chronic inflammation stimulates mammary tumourigenesis by disrupting signalling interactions between the epithelial ducts and the surrounding stromal microenvironment. Adipocyte enhancer-binding protein 1 (AEBP1) promotes mammary epithelial cell hyperplasia as a stromal factor that enhances activity of the proinflammatory transcription factor Nuclear Factor-?B (NF-?B) in macrophages. Aberrant NF-?B activity in macrophages elevates production of proinflammatory signals and the ligand sonic hedgehog (Shh), a significant contributor to tumourigenesis. In this study, Shh expression was elevated in macrophages isolated from transgenic mice (AEBP1TG) that overexpress AEBP1. Transient overexpression of AEBP1 in a macrophage cell line resulted in increased Shh expression. Furthermore, hedgehog target genes Gli1 and Bmi1 were up-regulated in mammary epithelium of AEBP1TG mice and HC11 mammary epithelial cells co-cultured with AEBP1TG macrophages. Growth of HC11 cells and mammary tumours was enhanced in response to AEBP1TG macrophages. These findings suggest that macrophage AEBP1 overexpression contributes to mammary hyperplasia through enhanced hedgehog signalling.
2

Aortic carboxypeptidase-like protein mutations and Ehlers-Danlos syndrome

Vishwanath, Neya 17 June 2019 (has links)
Ehlers-Danlos Syndrome (EDS) comprises a spectrum of heritable connective tissue disorders with varying genetic origins and clinical manifestations such as soft tissue fragility and skin hyperextensibility. There are multiple EDS subtypes, the first few of which were defined by collagen mutations. Many new EDS variants have been discovered involving mutations that do not necessarily implicate collagen biosynthesis but do involve extracellular matrix (ECM) proteins. One of these proteins, Aortic Carboxypeptidase-Like Protein (ACLP), is a large secreted protein encoded by the AEBP1 (adipocyte enhancer binding protein 1) gene. Previous research has shown that ACLP plays a vital role in binding collagen via its discoidin domain and therefore regulates connective tissue assembly. Thus far, individuals from 7 different families have been identified with different EDS-causing ACLP mutations. Some mutations are ACLP null whereas other mutations lead to expressed mutant ACLP. One of these mutations is characterized by a single-nucleotide deletion that causes the insertion of 40 amino acids in the discoidin domain of ACLP. It is therefore denoted “ACLP-Ins40”. The goal of this research was to characterize the ACLP-Ins40 protein and investigate how mutations in ACLP disrupt ECM homeostasis and cause EDS. We initially sought to determine if the ACLP-Ins40 mutation would alter ACLP’s ability to bind collagen. To achieve this goal we generated expression vectors of full length human ACLP carrying the Ins40 mutation. By western blot, it was determined that ACLP-Ins40 was not secreted from fibroblasts and was retained intracellularly. We then hypothesized that the retention of ACLP-Ins40 in the secretory pathway would induce ER stress due to misfolding. 3T3 fibroblasts were co-transfected with the ACLP-Ins40 expression vector and an XBP1u-EGFP sensor of ER stress. Immunofluorescence imaging revealed that in comparison to WT, fibroblasts expressing ACLP-Ins40 experienced ER stress with significantly increased spliced XBP1. This may then cause cell death, the improper secretion of other important ECM proteins, or defective collagen scaffolding, all which could contribute to symptoms of EDS. These studies contribute to our current understanding of how mutations in the AEBP1 gene and alterations in the ACLP protein cause EDS. This connection provides a framework for future research and for targeted interventions to treat EDS. / 2021-06-17T00:00:00Z
3

AEBP1 ALTERS MATRIX SIGNALLING AND IS RESPONSIVE TO INFLAMMATION IN THE MAMMARY GLAND

McCluskey, Greg 17 August 2012 (has links)
Breast cancer is characterized in part by chronic inflammation and tissue remodelling in the mammary gland. Adipocyte enhancer binding protein 1 (AEBP1), a pro-inflammatory protein, is up-regulated in breast cancer and enhances cytokine secretion in the mammary tumour microenvironment. AEBP1 over-expression in cultured macrophages resulted in increased enzymatic activity of MMP-9, a matrix metalloproteinase implicated in processing cytokines and stimulating tumour cell growth and mobility. MMP-9 activates the cytokine tumour necrosis factor-alpha (TNF?), and is required for the transformation of epithelial cells by the cytokine interleukin 6 (IL6). Treatment of epithelial cells with TNF? and IL6, both of which promote tumourigenesis, induced AEBP1 expression. Chromatin immunoprecipitation results suggested AEBP1 induction is directly mediated by pro-inflammatory transcription factors NF-?B and STAT3, downstream effectors of TNF? and IL6, respectively. AEBP1 induction may enhance inflammation, thereby contributing to cell proliferation and survival.
4

Transkriptionelle Netzwerke der RAS-abhängigen, MEK-ERK- vermittelten Transformation

Solf, Andrea 16 March 2011 (has links)
Transkriptionelle Netzwerke (Transkriptionsfaktoren, epigenetische Modulatoren und spezifische Zielgene) stellen die unterste Ebene der zellinternen Signalübertragung dar. Eingebettet in verschiedene stimulusabhängige Signalwege bedienen sich ihre Komponenten genetischer und epigenetischer Mechanismen, um Zielgene transkrip-tionell zu regulieren und Veränderungen der Chromatinstruktur hervorzurufen. In der vorliegenden Arbeit wurde die hierarchische Organisation und Zusam-mensetzung des MEK-ERK-abhängig gesteuerten transkriptionellen Netzwerks und seine Veränderung im Zuge der HRAS-vermittelten onkogenen Transformation von HA1-Zellen untersucht. Viele Arbeiten haben sich bereits eingehend mit der Charak-terisierung einzelner Komponenten und Zielgene beschäftigt (Wagner et al. 2005, Reddy et al. 2002, Sun et al. 2006, Kapitel 1). Im Unterschied zu den zitierten Studien wurde in der vorliegenden Arbeit ein umfassendes Protokoll zur genomweiten De-chiffrierung transkriptioneller Netzwerke unter Kombination von experimentellen und bioinformatischen Methoden entwickelt und durchgeführt. Die Analyse ge-nomweiter Expressionsprofile un- und U0126-behandelter immortaler und HRASV12-transformierter humaner Nierenepithelzellen (HA1EB, HA1ER) erlaubte die Identifi-zierung von 138 auf- und 103 abregulierten genspezifischen IDs der RAS-ERK-abhängig gesteuerten Signalkaskade. Regulierte Transkriptionsfaktoren wurden i-dentifiziert und im Westernblot, sowie zum Teil mittels Durchflusszytometrie und RT-PCR validiert und nachfolgend transienten siRNA-Experimenten unterzogen. Für die Transkriptionsfaktoren ELK3, SRF und den hierarisch darunter liegenden Faktor FRA1 wurden Expressionsprofile der spezifischen siRNA-vermittelten Hemmung in beiden Zelllinien erstell und mit bioinformatischen Methoden (TRAP, GSEA-GO) a-nalysiert um direkte und indirekte sowie gemeinsame Zielgene zu ermitteln. Zusätz-lich wurde der Effekt auf phänotypischer Ebene (Softagar, MTT) überprüft. In der vorliegenden Arbeit ließ sich keine direkte Hierarchie der drei Transkrip-tionsfaktoren SRF, FRA1 und ELK3 bestätigen. Allerdings konnte zum ersten Mal eine gemeinsam regulierte Gruppe von Genen identifiziert werden, die darauf schließen lässt, dass die drei Transkriptionsfaktoren sowohl in HA1EB, als auch in HA1ER Teile eines gemeinsam regulierenden Netzwerks sind. Aus den Proliferationsexperimenten wurde zudem bestätigt, dass jeder Transkriptionsfaktor individuell eine essentielle Rolle bei der Promotion maligner Eigenschaften spielt. Für alle drei Transkriptionsfak-toren konnte eine RAS-abhängige starke Verschiebung der spezifisch angesteuerten Gene nachgewiesen werden. Diese Verschiebung wurde mittels TRAP und GSEA auch für alternative Regulatoren der spezifischen Zielgene festgestellt. Die nähere Analyse der FRA1-abhängigen Zielgene führte zu neuen Erkenntnis-sen zur Umordnung des Transkriptoms im Zuge der onkogenen Transformation. Die FRA1-spezifischen Zielgene in HA1EB und HA1ER weisen unterschiedliche Funktio-nalitäten auf. So wurden in HA1EB viele Gene identifiziert, die im Rahmen der Im-munantwort eine Rolle spielen und in HA1ER nicht reguliert werden. In den RAS-transformierten HA1ER konnten dagegen Gene identifiziert werden, die in der Tu-morprogression eine Rolle spielen (FRA1, STAT3, MTA1, TCFL5). Die Verifizierungen mittels qPCR und ChIP bestätigten 5 der 38 möglichen FRA1-Zielgene. Von diesen, FRA1, AEBP1, FRA1, TCFL5, NPAS2 und YWHAZ ist lediglich FRA1 bereits als FRA1-Zielgen beschrieben. Die Funktionen der neu identifizierten RAS-abhängigen FRA1-Zielgene untermauerten bereits bekannte Funktionen der FRA1-vermittelten Transkription (Differenzierung, Proliferation, zirkadiane Rhythmen, Apoptose) und erweitern sie um verschiedene Aspekte wie Metabolismus und Rückkopplungen in die Signaltransduktion, die noch nicht für die RAS-abhängige FRA1-vermittelte Transktiption beschrieben worden sind. Dazu gehören unter anderem Interaktionen mit TGFbeta, WNT, JAK/STAT und JNK. Daneben sind in den HA1ER eine Vielzahl von Regulatoren des RHO-Signalwegs identifiziert worden, was für FRA1 auf bisher unbekannte Interaktionen mit RAC/RHO-Signalwegen schließen lässt. / Transcriptional networks represent the final level of internal signal transmission. They are embedded in different signalling pathways and use genetic as well as epi-genetic mechanisms to regulate their according target genes. During oncogenic trans-formation they are undergoing massive rearrangements in composition, regulation and interaction. This leads to radical changes in the transcriptome and drives the on-cogenic phenotype of the according cells. My thesis employs the composition of the MEK-ERK-dependent transcriptional net-work and its alteration during the HRAS-oncogene-mediated transformation in HA1-cells. By commencing from already known components: SRF, Ternary Complex Fac-tors (TCF: SAP1, SAP2/ELK3, ELK1) and members of the AP1-complex (JUN, FOS-proteins) I analyzed the alteration in expression of secondary targets and their inter-action as well as their relation to the superior factors. Therefore I compared genome wide expression profiles (Affymetrix, HG-U133A) of immortal HA1EB and HRASV12-oncogene-transformed HA1ER-cells with and without U0126-induced MEK/ERK-inhibition and extracted several MEK/ERK-dependent transcription factors. Among them where FRA1 and ELK3, two transcription factors already known to be involved in oncogenesis and proliferation associated processes. ELK3 needs SRF as crucial binding partner to function. Therefor I also included SRF into the subsequent analysis. The three transcription factors function in different time-dependent hierarchy states so we supposed a putative hierachical network be-tween them. I established transient knockdown cells deriving from HA1EB and HA1ER for all three transcription factors and generated further expression profiles from them. Additionally I verified the importance of these transcription factors on survival and proliferation via MTT and Softagar experiments. Using different statis-tically and bioinformatical methods (GSEA, TRAP) in collaboration with the Max-Planck-Institute for molecular Genetics Berlin, several direct and indirect targets of these transcription factors were predicted. These were partially overlapping in all transcription factors. Also, in comparison of the immortal and the transformed cell line, a shift of functionalities and composition of the different target gene populations and collaborating factors could be detected for all three transcription factors. It was found that in HA1EB FRA1 seems more likely to regulate immunresponsive genes as well as genes associated with the cytoskeleton and nucleus organisation whereas in HA1ER FRA1 regulates a large group of transcription- and signalling-associated genes. Additionally it could be shown that in both cell lines FRA1 regulates genes in-volved in epigenetic processes as well as circadian rhythms which are known to be important aspects in oncogenic transformation. I verified 37 different putative target genes of FRA1 using qRT-PCR (Taqman) and partially also ChIP-analysis. Of these 37genes, 5 were fully validated as directly regu-lated targets of FRA1: FRA1, AEBP1, YWHAZ, NPAS2 and TCFL5. They imply functionalities connected to proliferation and differentiation (AEBP1, FRA1, TCFL5) as well as apoptosis (YWHAZ) cell cycle control and circadian rhythm (NPAS2, AEBP1), feedbacks into the signalling (YWHAZ, AEBP1) and metabolism (NPAS2, AEBP1). Summarised the work of this thesis contributes to the decipherment of the direct and indirect targets of the according transcription factors and strengthens the argument of a general and massive shift of the transcriptional network during oncogenic trans-formation of cells. The importance of all three transcription factors on the survival of genes could be proved via proliferation assays. Additionally the functionality of their according targets could be integrated into processes connected to oncogenic trans-formation.

Page generated in 0.0186 seconds