• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 358
  • 187
  • 59
  • 43
  • 38
  • 30
  • 24
  • 17
  • 13
  • 12
  • 4
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 898
  • 267
  • 211
  • 206
  • 149
  • 123
  • 106
  • 85
  • 79
  • 73
  • 71
  • 70
  • 69
  • 69
  • 68
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Real time monitoring of Cell-Nanoparticles interaction and tracking internalization process by mechanical probing using Atomic Force Microscopy

Ly, Anh 01 January 2014 (has links)
With extensive development of nanotechnology in last few years, scientists have discovered that nanoparticles (NPs) can be used as an efficient Drug Delivery System (DOS). In order to develop better NPs based drug delivery tool, it is imperative to understand the interaction between the NPs and the cell membrane. In our earlier studies, cerium oxide nanoparticles (CNPs) have been reported to have therapeutic properties, specifically against abnormalities associated with oxidative stress. Therefore, CNPs with different sizes and morphology were selected to understand the interaction with cell. We analyzed the mechanical property of human nasal septum tumor cells membranes using Atomic Force Microscopy (AFM) with and without CNPs. In particular, Force-Distance spectroscopy mode was used to estimate the elasticity of cells membrane. Different concentrations (0, 50, 125 and 250 µM) of CNPs were added to the cells (squamous cells; CCL30) and incubated for different time periods (0, 15, 30 and 60 minutes). Cell membrane elasticity/Young's modulus was calculated using a modified Hertz model. Changes in the cell elasticity were observed in high concentration of CNPs when treated with one hour. Significant changes in cell elasticity were observed at high concentration of CNPs for one hour of incubation. No significant change in cell elasticity was observed over one hour time period for 50 µM of CNPs. Moreover, by using selected inhibitors to block different cell mediated internalization pathways, we also investigated the correlation between the cellular uptake and the tracking of NPs with their size. Specifically, similar change in cell elasticity was observed after blocking the cell energy production for CNPs with smaller diameter (3-5 nm). On the other hand, bigger size NPs (20-30 nm) showed no change in cell elasticity after blocking the cell energy production. These results indicate that 3-5 nm particles internalize cell by non-energy dependent pathway i.e. passive diffusion whereas 20-30 nm particles entered in cell by energy dependent pathways i.e. endocytosis of particles. Further, we have also identified the cellular uptake of 20-30 nm particles is by enclosing those CNPs in membrane vesicles in caveolae-mediated endocytosis mechanism. In summary, these results indicate that the nanoparticles-cell interaction has pronounced influence on the shape and size of the nanoparticles. These interactions can be further monitored by real time mechanical property measurement of cell membrane.
32

Imaging Long-range Orientational Order In Monolayers Of Amphiphilic Molecules With Scanning Probe Force Microscope And Liquid Crystal Optical Amplification

Liang, Wenlang 01 January 2011 (has links)
Monolayers of amphiphilic molecules at interface provide a unique system for understanding the thermodynamic and rheological properties of quasi two-dimensional systems. They are also an excellent model accessible for studying cell membranes. The feature of longrange organization of molecular tilt azimuth in monolayers at the air/water interface is one of the most interesting findings over the past two decades, which leads to the formation rich and defined textures. By observing the changes in these textures, the transitions between tilted monolayer phases can be detected. We study the boojum and stripe textures formed in the liquid-condensed phase of pentadecanoic acid (PDA) monolayers at the air/water interface and find that they can be preserved after being transferred to glass substrates at low dipping speeds at a temperature lower than the room temperature. Frictional force microscopy confirms the long-range tilt order in the transferred boojums and stripes of PDA, implying the interaction of the PDA molecules with the glass surface does not change the tilt order. Polymerized stripe textures of pentacosadiynoic acid (PCA) monolayers can also be transferred onto solid substrates. Atomic force microscopy shows that the PCA stripe textures represent the regular variations of molecular packing densities in PCA monolayers. Furthermore, we find that the molecular orientation and packing density changes in monolayers can induce the local order of nematic liquid crystals. Due to the longrange orientation correlation of nematic liquid crystals, the boojum and stripe textures in monolayers can be observed by an optical microscope after liquid crystal optical amplification.
33

AFM studies of the Metallicity of Single-walled Carbon Nanotubes and Corrosion Inhibitor Adsorption

Xiong, Yao 03 October 2011 (has links)
No description available.
34

Interfacial Phenomena and Surface Forces of Hydrophobic Solids

Mastropietro, Dean J. 16 June 2014 (has links)
At the molecular level the entropic “hydrophobic effect” is responsible for high interfacial energies between hydrophobic solids and aqueous liquids, the low solubility of apolar solutes in aqueous solvents, and self-assembly in biological processes, such as vesicle formation and protein folding. Although it is known that a strong attraction between apolar molecules exists at the molecular level, it is not clear how this force scales up to objects with dimensions in the range 100 nm–1 m. This work sets out to measure the forces between particles with a radius of about 10 µm. Because we can only measure the total force, which includes the van der Waals force and the electrostatic forces, it is important to isolate the effect of “hydrophobicity”. We do this by measuring for systems where the particles are very hydrophobic (water contact angle, θ ~110°) and the van der Waals and electrostatic forces are very small. Under these conditions we find that the total force is very small: it is similar to the van der Waals force at separations exceeding 5 nm. Many early works on the hydrophobic force reported surface force at over 100 nm of separation. However, many of these strong, long-ranged attractive forces are likely caused by submicron interfacial bubbles, known as nanobubbles. Nanobubbles were imaged with an atomic force microscope to better understand their stability and dependence on solution properties, such as initial concentration of dissolved gas and changes in gas concentration. We found that nanobubbles still formed in degassed solutions and that lowering the dissolved gas concentration did not reduce the bubble size, implying that nanobubbles do not form from dissolved gas in the liquid phase or do not contain gas and are instead water vapor. Furthermore, addition of an oxygen scavenger agent, sodium sulfite, to a liquid phase that had been pressured with oxygen did not reduce bubble size which could be evidence that nanobubbles are impermeable to gas diffusion across the gas liquid interface, do not form from the dissolved gas in the surrounding liquid, or do not contain gas and are instead water vapor. / Ph. D.
35

Scanning probe microscopic study of piezotronics and triboelectrification for their applications in mechanical sensing

Zhou, Yusheng 08 June 2015 (has links)
Scanning probe microscopy was employed to characterize the piezotronic effect in both longitudinal and transverse force sensing modes in CdSe, and GaN nanowires, respectively. Both experimental results show exponential response of their conductivity change to applied forces. Theoretical models are also presented to explain this mechanism and quantify the relationship, where strain induced piezoelectric polarization changes the metal-semiconductor Schottky barrier height. An in-situ method based on SPM is developed to characterize the triboelectric process, including tribo-charge intensity, multi-cycle friction effect, as well as its surface diffusion. Beyond that, effect of external electric field was investigated as an approach to manipulate the polarization and intensity. Finally, a concept of self-powered motion sensing technology is developed and demonstrated experimentally with nanometer resolution, long working distance as well as high robustness. It provides a promising solution for application areas that need ultra-low power consumption devices.
36

Investigating structure, properties and orientation of protein-biomaterial interfaces

Cacciafesta, Paola January 2001 (has links)
No description available.
37

Scanning Probe Microscopy of Graphene and Carbon Nanotubes

Xue, Jiamin January 2012 (has links)
This dissertation presents research on scanning probe microscopy and spectroscopy of graphene and carbon nanotubes. In total three experiments will be discussed. The first experiment uses a scanning tunneling microscope (STM) to study the topographic and spectroscopic properties of graphene on hexagonal boron nitride (hBN). Graphene was first isolated and identified on SiO₂ substrates, which was later found to be the source of graphene quality degradation, e.g. large surface roughness, increased resistivity and random doping etc. Researchers have been trying to replace SiO₂ with other materials and hBN is by far the most successful one. Our STM study shows an order of magnitude reduction in surface roughness and electrostatic potential variation compared with graphene on SiO₂.The second experiment shows a novel quantum interference effect of electron waves in graphene, loosely referred to as "Friedel oscillations." These arise when incident electron waves interfere with waves scattered from defects in the sample. This interference pattern shows up as a spatial variation in the local density of states, which can be probed by the STM. We measured such Friedel oscillations in graphene near step edges of hBN. Due to its peculiar band structure, the oscillations in graphene have a faster decay rate and their wavelength is an order of magnitude longer than similar oscillations previously observed on noble metal surfaces. By measuring the dependence of the Friedel oscillations on electron energy, we map out the band structure of graphene. The last experiment studies a different system: carbon nanotube quantum dots. By combining scanning probe microscopy and transport measurements, we obtain spatial information about quantum dots formed in a carbon nanotube field effect transistor. We also demonstrate the ability to tune the coupling strength between two quantum dots in series.
38

The mechanism of solid-liquid interactions

Booth, Jonathan January 1996 (has links)
No description available.
39

INVESTIGATION OF BIOMOLECULAR INTERACTIONS FOR DEVELOPMENT OF SENSORS AND DIAGNOSTICS

Zhang, Xiaojuan 16 November 2011 (has links)
The highly specific recognition processes between biomolecules mediate various crucial biological processes. Uncovering the molecular basis of these interactions is of great fundamental and applied importance. This research work focuses on understanding the interactions of several biomolecular recognition systems and processes that can provide fundamental information to aid in the rational design of sensing and molecular recognition tools. Initially, a reliable and versatile platform was developed to investigate biomolecular interactions at a molecular level. This involved several techniques, including biomolecule functionalization to enable attachment to self-assembled monolayers as well as atomic force microscopy (AFM) based force spectroscopy to uncover the binding or rupture forces between the receptor and ligand pairs. It was shown that this platform allowed determination of molecular binding between single molecules with a high specificity. The platform was further adapted to a general sensing formulation utilizing a group of flexible and adaptive nucleic acid recognition elements (RNA and DNA aptamers) to detect specific target proteins. Investigation of interactions at the molecular level allowed characterization of the dynamics, specificity and the conformational properties of these functional nucleic acids in a manner inaccessible via traditional interaction studies. These interactions were then adapted to aptamer-based detecting methods that at the ensemble or bulk scale, specifically taking advantage of mechanisms uncovered in the biophysical study of this system. A quartz crystal microbalance (QCM) was used to detect protein targets at the bulk level and the affinities and binding kinetics of these systems were analyzed. Along with AFM-based force spectroscopy, ensemble-averaging properties and molecular properties of these interactions could be correlated to contribute to bridging the gap across length scales. Finally, more broadly applicable sensing platform was developed to take advantage of the unique properties of aptamers. DNA was employed both as a carrier and as a molecular recognition agent. DNA was used as a template for nanoconstruction and fabricating unique shapes that could enhance the aptamer-based molecular recognition strategies. With aptamers tagged to distinct nanoconstructed DNA, a novel shape-based detecting method was enabled at the molecular level. The results demonstrated that this is a flexible strategy, which can be further developed as ultrasensitive single molecule sensing strategy in complex environments.
40

Synthèses et caractérisations de copolymères organométalliques biodégradables et biocompatibles à base de salicylidènes pour des applications pharmaceutiques

Nadeau, Véronique January 2006 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Page generated in 0.1325 seconds