• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 2
  • Tagged with
  • 12
  • 12
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contribution à l'étude et à la réalisation d'un aimant supraconducteur destiné à produire 20 Tesla.

Marty, Jean, January 1900 (has links)
Th. doct.-ing.--Grenoble 1, 1981. N°: 152.
2

Development of high Tc superconducting cables for applications in CERN / Study of the implementation of high temperature superconductors to accelerator magnets.

Fleiter, Jérôme 16 May 2013 (has links)
En physique des particules, les grands accélérateurs permettent de sonder la matière en produisant des collisions de faisceaux à haute énergie. Dans un accélérateur circulaire, l'énergie maximale de collision dépend directement de l'intensité du champ magnétique dipolaire servant à guider les particules le long de leur orbite. Dans le large collisionneur de hadrons installé au CERN, l'énergie de collision maximale est de 14 TeV dans le centre de masse. Réaliser des collisions à plus haute énergies nécessitera alors l'utilisation de matériaux supraconducteurs à haute température critique (HTS). Dans cette perspective, les propriétés électromécaniques des différents conducteurs HTS sont caractérisées et paramétrées à 4.2 K sous des inductions allant jusqu'à 12 T. Dans les aimants supraconducteurs d'accélérateur, le câble doit être à fort ampérage et à haute densité de courant (15 kA-400 A/mm2). Il consistera en plusieurs conducteurs HTS connectés en parallèle. La caractérisation et la modélisation des performances de tels câbles dans leurs futures conditions opérationnelles sont exposées dans cette thèse. / Particle colliders are the main tool for investigating and understanding the fundamental laws of physics. The CERN Large Hadron Collider (LHC), is a circular accelerator which steers and collides two counter-rotating protons beams. It has four collision points where detectors are placed to analyze the products emerging from the collisions. In a synchrotron machine a magnetic flux density is used to guide and focus particles around the orbit. The maximum energy that a circular machine with a given geometry can achieve is limited by the maximum strength of the dipole magnetic flux density. There is therefore an interest in the particle physics community in searching for dipole magnets with higher strength. The LHC has a beam trajectory radius of 4.3 km and a collision center-of-mass energy of 14 TeV. The accelerator employs 1232 large superconducting Nb-Ti dipole magnets operated at a flux density of up to 8.3 T in a bath of superfluid helium at 1.9 K. Energies higher than that achieved with the LHC require magnets made from superconductors with higher upper critical flux density. Nb3Sn is an option for magnets operated up to about 14 T. The level of energies of the type being discussed for a potential energy upgrade of the LHC machine - 33 TeV- would require the use of high temperature superconductors (HTS). Three technical HTS are available today: YBCO, Bi-2212 and Bi-2223. At low temperature YBCO conductors present both irreversible flux density and current density in excess of those measured in Bi-2212 and Bi-2223 conductors. In addition, YBCO can be used as reacted conductor, which makes its use for applications simpler than Bi-2212, which requires heat treatment at high temperature and in oxygen atmosphere after cabling and winding. The level of currents required for application to accelerator magnets, which is above 10 kA at the nominal operating temperature and flux density, excludes the use of single strands. The high current and high current density required can be achieved with cables having several strands connected in parallel. The main objective of my work has been the study of HTS cables for high current/high current density applications, starting from the analysis and selection of suitable conductors, through the characterization of their intrinsic (e.g. critical surface, strain sensitivity and irreversible strain) and extrinsic (e.g. cabling degradation) properties, with the final objective of validating 10 kA-range cables based on HTS material for high flux density magnets. The performance of YBCO and Bi-2223 tapes at 4 K under parallel and perpendicular flux density is measured using purpose built samples holders. A complete review of the strain sensitivity of HTS materials is presented, and the measured critical current retention of HTS tapes under torsion is discussed. Expressions that describe the critical current density of HTS conductors as a function of flux density strength, flux density orientation, temperature and strain are introduced. Analytical models that provide the allowable twist and bending radius of YBCO tapes as a function of strain are elaborated and compared with measurements. The accurate expressions are then used to compute the margins of the winding pack of a 19 T dipole made with a YBCO cable. Roebel cables made of YBCO high current strands are characterized at 4.2 K and in flux densities of up to 9.6 These are the first measurements ever performed at 4.2 K and with high currents. The Roebel cables reached critical currents of up to 12 kA with engineering current density in excess of 1.1 kA/mm2 at 7.5 T. These measurements demonstrate the potential of Roebel cables for high flux density magnets. During measurements two out of four Roebel cables were irreversibly damaged. The mechanism of failures is detailed and explained. Finally the performance and current distribution of HTS cables is computed and compared with measurements
3

Development of high Tc superconducting cables for applications in CERN

Fleiter, Jérôme 16 May 2013 (has links) (PDF)
En physique des particules, les grands accélérateurs permettent de sonder la matière en produisant des collisions de faisceaux à haute énergie. Dans un accélérateur circulaire, l'énergie maximale de collision dépend directement de l'intensité du champ magnétique dipolaire servant à guider les particules le long de leur orbite. Dans le large collisionneur de hadrons installé au CERN, l'énergie de collision maximale est de 14 TeV dans le centre de masse. Réaliser des collisions à plus haute énergies nécessitera alors l'utilisation de matériaux supraconducteurs à haute température critique (HTS). Dans cette perspective, les propriétés électromécaniques des différents conducteurs HTS sont caractérisées et paramétrées à 4.2 K sous des inductions allant jusqu'à 12 T. Dans les aimants supraconducteurs d'accélérateur, le câble doit être à fort ampérage et à haute densité de courant (15 kA-400 A/mm2). Il consistera en plusieurs conducteurs HTS connectés en parallèle. La caractérisation et la modélisation des performances de tels câbles dans leurs futures conditions opérationnelles sont exposées dans cette thèse.
4

Etude des transferts thermiques en hélium superfluide dans les milieux poreux / Studies of heat transfer in superfluid helium through porous media

Allain, Hervé 13 October 2009 (has links)
Pour la future génération d’aimants supraconducteurs à hauts champs magnétiques refroidis avec de l’hélium superfluide comme les prochains aimants développés pour l’amélioration des performances du Large Hadron Collider (LHC), les ingénieurs prennent en considération l’utilisation de supraconducteurs en niobium-étain. Dans leur environnement, ces aimants supraconducteurs vont être soumis à des pertes thermiques bien plus importantes que celles des aimants actuels des accélérateurs de particules. Alors que la résistance thermique due aux isolations électriques des câbles supraconducteurs constitue la principale résistance thermique au refroidissement, un nouveau type d’isolation, à base de céramique poreuse, est considéré. Afin de comprendre la capacité de refroidissement et la stabilité thermique de ces aimants, il devient alors nécessaire d’étudier les transferts thermiques en hélium superfluide dans les milieux poreux. Dans ce but, plusieurs dispositifs expérimentaux ont été mis au point afin de tester des milieux poreux modèles dont on connaît les principales caractéristiques (taille de pore, porosité, épaisseur). Par ailleurs, une étude théorique utilisant une méthode de changement d’échelle de type prise de moyenne volumique a permis d’obtenir une modélisation macroscopique des phénomènes étudiés et a montré la validité de la loi de Darcy en hélium superfluide sous certaines hypothèses. Ceci a été vérifié par des simulations numériques directes. Les résultats expérimentaux ont permis de mettre en exergue différents résultats ; tout d’abord, le régime d’écoulement est fonction de la taille des pores. Pour les pores les plus petits (10-7 et 10-6 m), le régime d’écoulement est le régime de Landau et ceci a permis de calculer la perméabilité en He II. Pour des tailles de pores de 10-5 m, le régime d’écoulement est le régime de Gorter-Mellink et les transferts de chaleur ont pu être modélisés à partir de la loi de Gorter-Mellink en introduisant la notion de tortuosité / For the next generation of high field magnets cooled with superfluid helium like magnets for the next particles accelerator or the upgrade of the Large Hadron Collider (LHC), engineers are taking into consideration the use of Nb3Sn superconductors. In their environment, these superconducting magnets will undergo much higher heat losses than in current particles accelerator. Since the thermal resistance due to the electrical insulations of the superconducting cables constitutes the main thermal resistance for cooling, new type of insulation, based on ceramic materials, are considered. In order to understand the cooling capacity and the thermal stability of these magnets, it is necessary to investigate the heat transfer through porous media in superfluid helium. In this purpose, several experiments were set up in order to study porous medium models for which we know the main characteristics (average pore size, porosity, thickness). Also, a theoretical study using an up-scaling method of type volume averaging allowed a macroscopic modeling of the studied phenomena and showed that Darcy’s law is valid in superfluid helium under given hypothesis. This has been verified by direct numerical simulations. Experimental results allowed to highlight several results; first, the flow regime depends on the pore size diameter. For the smallest pore (10-7 and 10-6 m), the flow regime is the Landau regime and this permitted to calculate the permeability in He II. For an average pore size of 10-5 m, the flow regime is the Gorter-Mellink regime and heat transfer were modeled using the Gorter-Mellink’s law by introducing the notion of tortuosity
5

Etude et modélisation des phénomènes thermohydrauliques résultant du quench d'un aimant supraconducteur refroidi en hélium supercritique / Study and modelling of the thermohydraulic phenomena taking place during the quench of a superconducting magnet cooled with supercritical helium

Huang, Yawei 19 October 2018 (has links)
Au cours des dernières décennies, le phénomène de quench a été une des problématiques les plus importantes abordées dans les conceptions d’aimants supraconducteurs. En effet, la transition de quench d’un aimant de son état supraconducteur à son état normal induit une grande quantité de l’énergie par effet Joule. Cet apport de chaleur va ensuite augmenter rapidement la température du conducteur ainsi que la pression du liquide de refroidissement à l’hélium. Le dépassement d’un certain seuil sur ces deux paramètres peut engendrer une détérioration irréversible à l’aimant et au système de refroidissement cryogénique. Afin de mettre en évidence les comportements de quench des bobines supraconductrices à champ toroïdal (TF) du Tokamak JT-60SA, nous avons réalisé des études expérimentales et numériques sur les phénomènes thermohydrauliques résultant du quench d’un aimant supraconducteur fabriqué en câble-en-conduit conducteur (CICC) et refroidi par l’écoulement forcé à l’hélium supercritique. Dans ce cadre, toutes les 18 TF bobines de JT-60SA ont été testées dans une configuration à une seule bobine dans leurs conditions de fonctionnement nominales de courant et de température (25,7 kA et 5 K). Une augmentation progressive de la température a été appliquée à l'entrée de l'hélium jusqu'à la température de quench, suivie d'une décharge rapide du courant dès que le quench est détecté pour protéger l'aimant. Les analyses expérimentales de ces tests ont d'abord permis d'identifier plusieurs phases dynamiques très différentes pendant toute la propagation de quench. Ensuite, les phénomènes physiques parcourant chacune de ces phases ont été étudiés et les plus prédominants ont été mis en évidence tels que les charges thermiques externes, les performances magnétiques des brins, les transferts thermiques conducto-convectifs entre conducteurs et hélium ou encore l'expulsion d'hélium et le reverse flow. Sur la base de ces analyses expérimentales, un modèle numérique d’une seule galette a été développé dans le code THEA afin d'analyser un phénomène physique à la fois sans construire un modèle global trop complexe de l'ensemble de l'aimant. Ce modèle d’une seule galette a été validé sur les données d'expériences de quench et a été appliqué avec succès pour faire d'autres analyses plus détaillées des phénomènes physiques ainsi que des phases dynamiques identifiées pendant la propagation de quench des TF bobines. Ce modèle numérique a même permis d'identifier certains phénomènes prépondérants qui n'ont pas pu être étudiés dans l'analyse expérimentale, tels que l'impact des instabilités des conditions de test sur la dynamique de quench. Les très bons résultats de ce modèle et sa cohérence avec les analyses physiques expérimentales en font une étape très intéressante vers la modélisation complète de toute la TF bobine de JT-60SA et l'étude de son comportement de quench dans une vraie machine Tokamak et non en conditions d'essais. / During the last decades, the quench phenomenon has been one of the most important issues addressed in the superconducting magnets designs. Indeed, the quench transition of a magnet from its superconducting state to its normal state induces a large deposition of the Joule effect energy leading to an abrupt temperature increase in the conductor as well as a large pressure rise in the helium coolant. Any excess of these two parameters can cause an irreversible damage either to the magnet or to the cryogenic system. In order to achieve a better understanding of the quench behavior of the TF coils in the superconducting Tokamak JT-60SA, we carried out both experimental and numerical studies of the thermohydraulic phenomena taking place during the quench of a superconducting magnet manufactured with Cable-In-Conduit Conductor and cooled in forced flow with supercritical helium. In this framework, all the 18 JT-60SA TF coils were tested in a single coil configuration at their nominal operating conditions of current and temperature (25.7kA and 5K). A progressive temperature increase has been applied to the helium inlet up to the quench temperature, followed by a current fast discharge as soon as the quench is detected to protect the magnet. The experimental analyses of these tests allowed first to identify several very different dynamic phases in the overall quench propagation time. Then, the physical phenomena driving each one of these phases have been studied and the most predominant ones have been highlighted such as the external heat loads, the strands magnetic performances, the conductive and convective heat transfers between conductors and helium or even the helium expulsion and reverse flow. Based on these experimental analyses, a single pancake numerical model has been developed in the THEA code in order to analyze one physical phenomenon at a time without building a too complex global model of the entire magnet. This single pancake model has been validated on the quench experiments data and has been successfully applied to make further more detailed analyses of the physical phenomena as well as the dynamic phases identified during the TF coils quench propagation. This numerical model even allowed identifying some driving physical phenomena that could not be studied in the experimental analysis, such as the impact of the testing conditions instabilities on the quench dynamics. The very good results of this model and its coherence with physical experimental analyses makes it a very interesting step towards the full modelling of the entire JT-60SA TF coil and the study of its quench behavior in real Tokamak and not test facility conditions.
6

Contribution à l'étude d'un insert dipolaire supraconducteur à haute température critique pour accélérateur des particules, utilisent le concept de câble multi-rubans torsadé / HTS dipole insert using a twisted stacked cable for a particle accelerator- Twisted Stacked/ Block-type HTS insert -

Himbele, John 08 December 2016 (has links)
Les travaux de cette thèse portent sur un insert dipolaire de supraconducteur à haute TC (SHT) en utilisant un câble multi-rubans torsadé pour un accélérateur des particules dans le cadre du projet EuCARD2 au CERN. L’insert dipolaire SHT est la seule possibilité aujourd'hui pour aller au-dessus de 16 T pour le futur accélérateur des particules à haute énergie. Deux spécifications de cet insert SHT sont les grands courants de fonctionnement (> 10 kA) et les champs de fond élevés (> 13 T) conduisant à des conditions de fonctionnement sévères. Pour répondre à ces attentes, un premier insert SHT de multi-rubans torsadé/ type de bloc est proposé sur la base des approches analytiques, numériques et expérimentales. Les travaux sont principalement classés dans le design d’insert dipolaire et le design de câble multi-rubans torsadé. Cette thèse se terminée avec la meilleure solution pour l’insert SHT de multi-rubans torsadé/ type de bloc en utilisant le câble partiellement isolé. / This Ph.D. deals with a high Tc superconducting (HTS) dipole insert using a twisted stacked cable for a particle accelerator in the framework of EuCARD2 project in CERN. The HTS dipole insert is the only possibility today to go above 16 T for the future high-energy particle accelerator. Two specifications of these HTS insert are large operating currents (> 10 kA) and high background fields (> 13 T) leading to severe operating conditions. To meet these expectations, a first Twisted Stacked/ Block-type HTS insert is proposed based on analytical, numerical and experimental approaches. The works are mainly classified into dipole insert design and twisted stacked cable design. This Ph.D. ends with the best solution for Twisted Stacked/ Block-type HTS insert using partially-insulated cable.
7

Contribution au développement des aimants supraconducteurs MgB2 R & W refroidis par conduction solide. / Contribution to the development of dry R & W MgB2 superconducting magnets

Pasquet, Raphael 08 January 2015 (has links)
Actuellement, l’immense majorité des aimants supraconducteurs, notamment d’IRM, sont refroidis par un bain d’hélium liquide à pression atmosphérique. Néanmoins, ce type de refroidissement est onéreux et impose des contraintes sécuritaires importantes pour les grands volumes. Pour ces raisons, le refroidissement des aimants supraconducteurs est souhaitable sans l’hélium liquide. L’utilisation de cryogénérateur permet de refroidir par conduction solide jusqu’à 4 K et ainsi supprimer l’hélium liquide. Néanmoins, les faibles puissances disponibles combiner aux difficultés de mise en œuvre de ce type de refroidissement rendent difficile l’utilisation dans ces conditions du NbTi. En revanche à 10 K, la puissance des cryogénérateurs augmente d’un facteur 10, mais l’utilisation d’un supraconducteur à haute température critique est alors nécessaire. Notre choix s’est porté sur les conducteurs MgB2 R & W qui ont l’avantage d’être relativement économique à mettre en œuvre, mais qui ont, en revanche, le défaut d’être sensible à la déformation. Il est donc nécessaire d’être soigneux lors de leurs bobinages pour ne pas dégrader leurs performances supraconductrices. Dans le cadre de cette thèse, nous avons développé un insert froid refroidis par conduction solide permettant de mesurer le courant critique des conducteurs MgB2 R & W ainsi que des maquettes. Pour ce faire, un nouveau type de contact thermique à base de nitrure d’aluminium a été développé. En complément, nous avons conçu deux maquettes d’aimant MgB2 R & W : un solénoïde et une double galette. Cette dernière a été fabriquée (grâce à une nouvelle méthode de bobinage brevetée) et testée avec succès. / Currently, the majority of superconducting magnets, including MRI, are cooled by a bath of liquid helium at atmospheric pressure. Nevertheless, this type of cooling is expensive and imposes significant security constraints for large volumes. For these reasons, the cooling of superconducting magnets is desirable without liquid helium. Cryocooler provides dry cooling to 4 K without any liquid helium. However, the power available is low and dry cooling is difficult. In these conditions, it is complicate to use NbTi with dry cooling. But if we increase the operating temperature to 10 K, the power of cryocooler increases by a factor of ten. Nevertheless in this case, it is necessary to use of a high critical temperature superconductor. We choose to use MgB2 R & W conductors because it is relatively low cost but it has the handicap to be sensible at mechanical stress. It is therefore necessary to be careful during their winding to not degrade their superconducting performance. As part of this thesis, we have developed a dry test facility to measure the critical current of MgB2 R & W conductors as well as mock-ups. To do this, a new type of thermal contact based on aluminum nitride has been developed. In addition to this development, we designed two MgB2 R & W magnet mock-ups: a solenoid and a double pancake. The double pancake was manufactured (with a new patented winding method) and it has been successfully tested.
8

Contribution à l'Etude des aimants supraconducteurs utilisant des matériaux supraconducteurs à haute température de transition

Lecrevisse, Thibaud 14 December 2012 (has links) (PDF)
L'apparition ces dernières années de supraconducteurs réalisés industriellement utilisant des composés à haute température de transition offre la possibilité de nouveaux développements en magnétisme supraconducteur. En effet ils permettent d'augmenter le champ magnétique généré en conservant une cryogénie classique à 4,2K d'une part, et ils ouvrent la voie à des développements d'aimants supraconducteurs fonctionnant entre 10 et 30K d'autre part. Les matériaux supraconducteurs à haute température critique sont alors indispensables pour dépasser les inductions magnétiques de 16 T (cas de l'insert dipolaire HTc pour le Large Hadron Collider du CERN) ou augmenter la densité spécifique d'énergie stockée dans un SMES (Superconducting Magnetic Energy Storage, cas du projet ANR SuperSMES). Les atouts incontestables (température critique, champ magnétique critique, résistance mécanique) apportés par l'utilisation des matériaux supraconducteurs à haute température critique tels que l'YBaCuO dans les aimants supraconducteurs demandent de relever quelques défis. Leur comportement est encore mal compris, surtout lors des transitions résistives. Arriver à protéger ces conducteurs requiert une réflexion nouvelle sur les systèmes de protection destinés à éviter les dégradations thermiques et mécaniques. La réponse à la question " peut-on utiliser ces matériaux de manière pérenne dans les aimants supraconducteurs ? " est incontournable. Des éléments de réponse sont donnés ici. L'utilisation des conducteurs est abordée à travers différentes études expérimentales permettant de mieux connaître le conducteur (caractérisation électrique et modélisation de la surface critique) d'une part et de définir les étapes clés de la fabrication des aimants supraconducteurs à haute température de transition (étude des jonctions entre conducteurs ou entre galettes) d'autre part. Cette étude a abouti à la réalisation de deux prototypes d'aimants ayant permis d'identifier les difficultés liées à l'utilisation des rubans d'YBaCuO. Un modèle thermoélectrique des supraconducteurs à haute température de transition est développé et un code numérique basé sur le logiciel de calcul par Eléments Finis CASTEM permet d'étudier le phénomène de transition résistive, ou quench, dans un conducteur et dans un aimant. Le code a été validé sur des essais réalisés au Laboratoire National des Champs Magnétiques Intenses de Grenoble. Les résultats obtenus ont permis la définition des conducteurs pour les deux projets liés à la thèse et la validation de la protection.
9

Contribution à l'étude des aimants supraconducteurs utilisant des matériaux supraconducteurs à haute température de transition

Lecrevisse, Thibault 14 December 2012 (has links) (PDF)
L'apparition ces dernières années de supraconducteurs réalisés industriellement utilisant des composés à haute température de transition offre la possibilité de nouveaux développements en magnétisme supraconducteur. En effet ils permettent d'augmenter le champ magnétique généré en conservant une cryogénie classique à 4,2K d'une part, et ils ouvrent la voie à des développements d'aimants supraconducteurs fonctionnant entre 10 et 30K d'autre part. Les matériaux supraconducteurs à haute température critique sont alors indispensables pour dépasser les inductions magnétiques de 16 T (cas de l'insert dipolaire HTc pour le Large Hadron Collider du CERN) ou augmenter la densité spécifique d'énergie stockée dans un SMES (Superconducting Magnetic Energy Storage, cas du projet ANR SuperSMES).Les atouts incontestables (température critique, champ magnétique critique, résistance mécanique) apportés par l'utilisation des matériaux supraconducteurs à haute température critique tels que l'YBaCuO dans les aimants supraconducteurs demandent de relever quelques défis. Leur comportement est encore mal compris, surtout lors des transitions résistives. Arriver à protéger ces conducteurs requiert une réflexion nouvelle sur les systèmes de protection destinés à éviter les dégradations thermiques et mécaniques. La réponse à la question " peut-on utiliser ces matériaux de manière pérenne dans les aimants supraconducteurs ? " est incontournable.Des éléments de réponse sont donnés ici. L'utilisation des conducteurs est abordée à travers différentes études expérimentales permettant de mieux connaître le conducteur (caractérisation électrique et modélisation de la surface critique) d'une part et de définir les étapes clés de la fabrication des aimants supraconducteurs à haute température de transition (étude des jonctions entre conducteurs ou entre galettes) d'autre part. Cette étude a abouti à la réalisation de deux prototypes d'aimants ayant permis d'identifier les difficultés liées à l'utilisation des rubans d'YBaCuO. Un modèle thermoélectrique des supraconducteurs à haute température de transition est développé et un code numérique basé sur le logiciel de calcul par Eléments Finis CASTEM permet d'étudier le phénomène de transition résistive, ou quench, dans un conducteur et dans un aimant. Le code a été validé sur des essais réalisés au Laboratoire National des Champs Magnétiques Intenses de Grenoble. Les résultats obtenus ont permis la définition des conducteurs pour les deux projets liés à la thèse et la validation de la protection.
10

Conception d’un aimant supraconducteur MgB₂ à hauts champs / Design of a MgB₂ high-field superconducting magnet

Avronsart, Julien 09 October 2019 (has links)
La raréfaction de l'hélium utilisé pour le refroidissement des aimants supraconducteurs pousse les fabricants d'aimants supraconducteurs à se tourner vers d'autres types de supraconducteurs performants qui peuvent être employés et refroidis par conduction solide; C'est le cas du MgB₂ . Découvert en 2001, sa température critique (39 K), sa production en série sous différentes formes (rubans, câbles, films etc…) sur de grandes longueurs permettent d'envisager une utilisation à un prix compétitif dans les aimants en remplacement des supraconducteurs basses températures historiques que sont le NbTi et le Nb₃Sn.Cependant, les conducteurs en MgB₂doivent encore être améliorés notamment leur tenue mécanique par rapport aux conducteurs en NbTi et leurs performances réelles à hauts champs doivent encore être démontrées dans les applications concrètes.Cette thèse a pour but le dimensionnement et la fabrication d'un prototype d'aimant MgB₂ refroidi par conduction solide générant un champ au centre de 2 T dans un champ de fond de 3 T. Trois longueurs de conducteur ont du être soudées par deux jonctions résistives au centre du bobinage complexifiant la fabrication du prototype. La thèse s'articule autour de trois axes structurant. Tout d'abord, des caractérisations des performances supraconductrices et mécaniques de différents conducteurs en MgB₂ permettent de sélectionner le conducteur utilisé pour le bobinage du prototype. Ensuite, le dimensionnement du prototype est présenté : calculs mécaniques, thermiques, magnétiques et thermalisation de l'aimant sans oublier la protection. Après la phase de dimensionnement, les étapes nécessaires à la fabrication du prototype (bobinage,imprégnation, mise en place de l'instrumentation et des systèmes de thermalisations) sont détaillées. Afin de valider les étapes précédentes et les performances du prototype, la thèse se termine par une présentation et une analyse des résultats des tests effectués sur le prototype. / Helium shortage is an issue for superconducting magnets and drives superconducting magnet designer to find other types of effective superconductors that could be used in conduction-cooled magnets.MgB₂ is a promising superconducting material and could fill the demand. MgB₂ was discovered in2001, its critical temperature (39 K) as well as its mass production of a variety of shapes (ribbons, films, cables, wires…) over long length makes MgB₂ a competitive substitute to historical low temperature superconductors such as NbTi and Nb₃Sn in magnets. Although promising, MgB₂ conductors still need mechanical improvement compared to NbTi's and their performance in practical applications has yet to be demonstrated especially for low bending radius magnets. This thesis aims to design and builda MgB₂ conduction-cooled prototype generating a 2 T on the axis on its own in a 3 T background field. Three lengths of conductors were fused by two resistive junctions at the very heart of the winding challenging the design and the fabrication because of the thermal issues. The thesis focuses on three main topics. First, superconducting and mechanical performances of several MgB₂ conductors candidates for the prototype are analyzed and discussed. The design calculation (magnetic, mechanical,thermalization of the prototype and protection) and all the fabrication process (winding, instrumentation, thermal apparatus and impregnation) are presented. In order to validate the fabrication steps and the performances of the prototype, the protoype is tested and the results discussed in the last chapter.

Page generated in 0.031 seconds