• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • Tagged with
  • 12
  • 6
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

TCP-Carson: A loss-event based Adaptive AIMD algorithm for Long-lived Flows

Kannan, Hariharan 13 May 2002 (has links)
The diversity of network applications over the Internet has propelled researchers to rethink the strategies in the transport layer protocols. Current applications either use UDP without end-to-end congestion control mechanisms or, more commonly, use TCP. TCP continuously probes for bandwidth even at network steady state and thereby causes variation in the transmission rate and losses. This thesis proposes TCP Carson, a modification of the window-scaling approach of TCP Reno to suit long-lived flows using loss-events as indicators of congestion. We analyzed and evaluated TCP Carson using NS-2 over a wide range of test conditions. We show that TCP Carson reduces loss, improves throughput and reduces window-size variance. We believe that this adaptive approach will improve both network and application performance.
2

Spin-flip time-dependent density functional theory and its applications to photodynamics

Zhang, Xing January 2016 (has links)
No description available.
3

Modélisation à l'échelle moléculaire des aérosols carbonés dans la troposphère / Modeling at a Molecular Scale of Carbonaceous Aerosols in the Troposphere

Radola, Bastien 27 October 2017 (has links)
Dans ce travail de thèse, des méthodes de simulation numérique ont été utilisées afin de modéliser, à l’échelle moléculaire,l’interaction entre des aérosols carbonés et diverses molécules de l’atmosphère.L’objectif était de caractériser les propriétés physico-chimiques de ces aérosols, qui jouent un rôle majeur dans le climat, en particulier via leur capacité à former des noyaux de condensation pour les molécules d’eau. En premier lieu, les techniques de la dynamique moléculaire ont été appliquées à la détermination de l’organisation d’agrégats d’acide carboxylique sur lesquels sont adsorbées des molécules d’eau. Les résultats montrent une influence à la fois de la température, du taux d’humidité et du type d’acide considéré sur le comportement global des agrégats. Par contre, il a été montré qu’un mélange binaire d’acides n’a que peu d’influence sur ce comportement. En second lieu, des techniques de simulation moléculaires quantiques, à la fois statiques et dynamiques, ont été appliquées à l’étude de la chloration de surfaces de suie, modélisées par de grands HAP, ainsi qu’à la caractérisation de leur affinité pour les molécules d’eau. Les résultats ont montré une forte propension de Cl, Cl2 et HCl à former des HAP chlorés à la faveur de la présence de défauts structurels. Ces structures chlorées présentent une forte hydrophilicité, ce qui pourrait expliquer la nature fortement hygroscopique de suies émises lors d’incendies industriels. / In this PhD work, molecular simulation methods have been used in order to model, at the molecular scale, the interaction between carbonaceous aerosols andvarious atmospheric species. The aim wasto characterize the physico-chemical properties of these aerosols, which play a major role in climate forcing, in particular through their ability to act as cloud condensation nuclei.First, molecular dynamics techniques have been applied to determine the structure of carboxylic acid aggregates on which water molecules are adsorbed. The results of our simulations show an influence of the temperature, of the humidity and of the type of carboxylic acid considered on the global behavior of the aggregates. By contrast,a mixture of different types of acid molecules has no influence on this behavior. Secondly, quantum molecular simulation techniques have been applied to study the chlorination of soot surfaces, modeled by large PAHs, and their behavior with respect to water molecules adsorption. The results show a strong propensity of Cl, Cl2and HCl species to form chlorinated PAHsthanks to the presence of structural defects.These chlorinated structures show as trong hydrophilicity, which may explain the strong hygroscopic nature of soots emitted by industrial fires.
4

The Relative Security Metric of Information Systems: Using AIMD Algorithms

Owusu-Kesseh, Daniel 28 June 2016 (has links)
No description available.
5

Structure and Dynamics of Ge-Se Liquids and Glasses under Pressure / La structure et la dynamique des liquides et des verres chalcogénures sous pression

Yildirim, Can 22 September 2016 (has links)
Les verres de chalcogénure sont ont une grande importance dans des applications optoélectroniques, mais aussi pour leur réseau covalent qui leur procure une "variabilité structurale" accrue. Ce projet étudie des alliages Ge-Se et utilise l'association d'analyses dynamique moléculaire (AIMD), de simulations et de diffusion des rayons X afin de déterminer la structure et la dynamique des phases liquide et vitreuse sous pression. Les alliages de Ge-Se permettent la "formation de verre" sur une large gamme de conditions, ce qui permet de contrôler la rigidité du réseau en augmentant le nombre moyen de coordination en fonction de la teneur en Ge ce qui affectera les propriétés macroscopiques du matériau, comme la résistance au vieillissement, la dureté, la conductivité et la fragilité. Dans cette optique, nous étudions 10 compositions générées/calculées par AIMD, et 5 autres compositions déterminées expérimentalement (i.e par trempe ) couvrant les domaines transitions élastiques souple-rigide suivant les critères de stabilité isostatique de Maxwell. Dans le cas de l'état liquide, la comparaison au préalable des données de la expérimentale permet de valider les modèles structuraux, pour ensuite examiner la dynamique des liquides de Ge-Se à pression ambiante. En partant du postulat que la mobilité atomique du système décroit en devenant plus rigide, l'étude des coefficients de diffusion et de la viscosité à 1050 K a montré des anomalies flagrantes... / Among network forming glasses, chalcogenide glasses are of great importance not only for their optoelectronic applications, but also for the network structure that displays enhanced structural variability due to the covalent bonding network. In this project, we study the Ge-Se binary alloy as the target system in order to investigate the structure and dynamics of the liquid and glassy phases under pressure by using a combination of ab initio molecular dynamics (AIMD) simulations and X-ray scattering experiments...
6

Ab Initio Molecular Dynamics Simulations to Understand Speciation and Solvation Structure of Common Herbicides

Windom, Zachary W 14 December 2018 (has links)
The application of commercial herbicide restricts weed growth and significantly improves control over crop vitality and yield. Despite their utility in the agriculture sector, herbicides have the potential to contaminate local water sources. To minimize environmental impacts, the development of efficient separation processes to clean-up contaminated water bodies is necessary. However, complex speciation and conformational flexibility in the condensed phase poses a significant challenge. In this work, we investigate structure and speciation of three common organic herbicides (glyphosate, atrazine, and metolachlor) in aqueous solution. We employ the PBE-D3 density functional to perform ab initio molecular dynamics (MD) simulations in the canonical and isothermal-isobaric ensembles. We analyze MD trajectories to understand hydrogen bonding dynamics and lifetime as well as diffusional and vibrational characteristics. To enhance configurational sampling, we conduct metadynamics simulations to obtain the free energies of dissociation and intramolecular proton transfer of glyphosate.
7

Structural Characteristics and Thermophysical Properties of Molten Salts From Ab Initio Molecular Dynamics Simulations

Clark, Austin David 09 August 2021 (has links)
This work 1) draws insights on molten salt structure and properties directly from ab initio molecular dynamics (AIMD) simulations, 2) demonstrates the advantageous symbiosis of computational and experimental collaborations on molten salt research, and 3) simultaneously generates ab initio data sets for fitting an interatomic potential model for classical molecular dynamics (MD) simulations. This work discusses the motivations for AIMD simulations of molten salts, thermophysical properties and structural characteristics of interest, advanced methodologies for AIMD simulations, and several completed AIMD studies on molten salts. Of import are the methodological contributions of this work to AIMD simulations, primarily the radical increase in generalized gradient planewave energy cutoff used to more accurately model the electron distribution across a highly-polarizable molten salt. Cutoffs of up to 2500 Rydbergs are used in this work, but 2000 Rydbergs is found to be sufficient for most AIMD NpT modelling of molten fluorides. The equilibrium liquid density of eutectic FLiNaK as a function of temperature is found to agree with the experimental density reported by Chrenkova et al. to within 0.2%, and the equilibrium liquid density of eutectic FMgNaK is found to agree with experimental measurements reported herein to within 4%. Self-diffusion coefficients in FMgNaK are also considered, with applicability to other halide salts. Molybdenum, Cesium, iodide, nickel, hydrogen, oxide, and uranium complexation are examined. It is found that solvation strength can be qualitatively determine via AIMD simulations, and that poorly solvated solutes will minimize the surface area of interaction with the salt solution. Cesium in particular is shown to be volatile or retainable in FLiBe at 500, 650, and 800 ËšC based on complexation and validated experimentally. It is shown that the chemical potential of an anion varies between melts as influenced by the different cations present in each melt. Hence, attempts to use a common electrochemical reference reaction for different salt mixtures are at best an approximation.
8

Diffusion in the liquid Co binder of cemented carbides: Ab initio molecular dynamics and DICTRA simulations

Walbrühl, Martin January 2014 (has links)
A fundamental quantum mechanical modelling approach is used for calculating liquid diffusion parameters in cemented carbides. Up to now, no detailed description of diffusion for alloying elements in a liquid Co matrix is available. Neither are experimental measurements found in the literature for the self- or impurity diffusion in the liquid Co system. State of the art application is the description of gradient formation in cemented carbide systems using DICTRA. In this work it is assumed that diffusion during sintering of cemented carbides takes place mainly in the liquid Co binder phase. With this assumption one can calculate the diffusion coefficient for different alloying elements like W, Ti, N and C in a liquid Co matrix phase. The mean square displacement (MSD) of the diffusing atoms is used to obtain the diffusion coefficients which could be simulated by Ab initio Molecular Dynamics (AIMD). By fitting the computed temperature dependence with the Arrhenius relation one can determine the frequency factor and the activation energy which allows to give a quantitative description of the diffusion. Three methods will be used for validating the data from this work. Available estimated literature values based on calculations (scaling laws, a modified Sutherland equation and classical molecular dynamics) will be used to compare the results in a first instance. The general agreement for diffusion in liquid metals will be done by comparison with experimental data for the liquid Fe system. In a last step, the diffusion values obtained by this work will be used to create a kinetic database for DICTRA. The gradient simulations will be compared with experimentally measured gradients. The AIMD simulations are performed for binary diffusion systems to investigate the diffusion between the liquid Co matrix and one type of alloying element. In a second approach the diffusion for a multicomponent systems with Co, W, Ti and C has been performed. The results from the present AIMD simulations could be shown to be in good agreement with the literature. Only two DICTRA simulations could be performed within the timeframe of this work. Both are predicting a ~3 times bigger gradient zone whereas the initial choice of the labyrinth factor λ = f could be identified as a possible source of disagreement. A labyrinth factor of λ = f2 with the calculated mobility values from the AIMD calculations should give improved results. Although the results from those simulations are not available to this date. The two approaches of the diffusion simulations in the binary and multicomponent system are giving matching results. The non-metallic elements C and N are diffusing two times faster than the fastest metallic element Co. The diffusivity of Ti is slightly lower than Co and W could be identified as the element with the slowest diffusion within the liquid Co matrix. Further investigations of the liquid structure could indicate the tendency to form bonds between C and W and between C and Ti. This gives slowed down diffusion of C in the multicomponent system compared to the diffusion in the binary Co-C system.
9

Multiscale Modeling of Molecular Sieving in LTA-type Zeolites : From the Quantum Level to the Macroscopic

Mace, Amber January 2015 (has links)
LTA-type zeolites with narrow window apertures coinciding with the approximate size of small gaseous molecules such as CO2 and N2 are interesting candidates for adsorbents with swing adsorption technologies due to their molecular sieving capabilities and otherwise attractive properties. These sieving capabilities are dependent on the energy barriers of diffusion between the zeolite pores, which can be fine-tuned by altering the framework composition. An ab initio level of theory is necessary to accurately describe specific gas-zeolite interaction and diffusion properties, while it is desirable to predict the macroscopic scale diffusion for industrial applications. Hence, a multiscale modeling approach is necessary to describe the molecular sieving phenomena exhaustively. In this thesis, we use several different modeling methods on different length and time scales to describe the diffusion driven uptake and separation of CO2 and N2 in Zeolite NaKA. A combination of classical force field based modeling methods are used to show the importance of taking into account both thermodynamic, as well as, kinetic effects when modeling gas uptake in narrow pore zeolites where the gas diffusion is to some extent hindered. For a more detailed investigation of the gas molecules’ pore-to-pore dynamics in the material, we present a procedure to compute the free energy barriers of diffusion using spatially constrained ab initio Molecular Dynamics. With this procedure, we seek to identify diffusion rate determining local properties of the Zeolite NaKA pores, including the Na+-to-K+ exchange at different ion sites and the presence of additional CO2 molecules in the pores. This energy barrier information is then used as input for the Kinetic Monte Carlo method, allowing us to simulate and compare these and other effects on the diffusion driven uptake using a realistic powder particle model on macroscopic timescales. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript.</p>
10

ICME guided development of cemented carbides with alternative binder systems

Walbrühl, Martin January 2017 (has links)
The development of alternative binder systems for tungsten carbide (WC) based cemented carbides has again become of relevance due to possible changes in EU regulations regarding the use of Cobalt (Co). A framework for the ICME (Integrated Computational Materials Engineering) based Materials Design is presented to accelerate the development of alternative binder systems. Part one of this work deals with the design of the cemented carbide composite hardness. It has been shown that the intrinsic binder hardness is comparable to a bulk metal alloy and that based on the binder solubilities a solid solution strengthening model developed in this work can be employed. Using a method presented in this work the non-equilibrium, frozen-in binder solubilities can be obtained. Both the design of the binder phase and composite hardness is presented based on a general Materials Design approach. Part two deals with a multiscale approach to model the surface gradient formation. The experimentally missing data on liquid binder diffusion has been calculated using AIMD (Ab initio Molecular Dynamics). The diffusion through the liquid cemented carbide binder has to be reduced to an effective diffusion value due to the solid carbides acting as obstacles that increase the diffusion path. The geometrical reduction of the diffusion has been investigated experimentally using the SIMS (secondary ion mass spectroscopy) technique in WC-Nickel-58Nickel diffusion couples. The geometrical contribution of the so-called labyrinth factor has been proven by the combination of the experiments and in conjunction with DICTRA simulations using the precise liquid AIMD diffusivities. Unfortunately, despite the improved kinetic database and the geometrical diffusion reduction, the surface gradient formation cannot be explained satisfactory in complex cemented carbide grades. Additional, but so far unidentified, contributions have to be considered to predict the surface gradient thickness. / <p>QC 20170919</p>

Page generated in 0.0235 seconds