411 |
Characterization of the antibodies and antibody technologies to improve the pharmaceutical activity / 薬学的活性を改善するための抗体および抗体技術に関する研究Shinmi, Daisuke 23 January 2018 (has links)
京都大学 / 0048 / 新制・論文博士 / 博士(工学) / 乙第13145号 / 論工博第4163号 / 新制||工||1687(附属図書館) / (主査)教授 森 泰生, 教授 浜地 格, 教授 梅田 眞郷 / 学位規則第4条第2項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
412 |
Validation of Treponema pallidum haemoagglutination test compared with Treponema pallidum particle agglutination testLind, Emilia January 2023 (has links)
Treponema pallidum (T. pallidum) is the bacteria that causes syphilis, which is a sexually transmitted disease that might give the carrier a multisystemic infection. A combination of serological tests is needed to put a diagnosis of T. pallidum infection, because the bacteria cannot be cultured in vitro. Serological tests categorize intro nontreponemal test and treponemal test, which both are needed for a correct diagnosis. The principle of a nontreponemal test is the measure of antibodies directed towards lipoid antigens, whereas the principle of a treponemal test is the measure of antibodies directed towards specific T. pallidum antigens. One kind of a treponemal test that are used are treponemal antibody test which is a manual agglutination test. At Sundsvall County hospital TP-PA was used for detection of antibodies, this kit is no longer available for purchase which means that a new kit must be validated to take its place. The purpose of this study was to evaluate the possible replacing kit, TP-HA. To validate TP-HA, ten positive serum samples were analyzed and compared with the two kits. A positive kit-control were also used to confirm the results of this study. The results showed that TP-PA was more sensitive than TP-HA according to a Wilxocon ranking test (p<0.05). Because TP-PA has to be replaced due to stricter in vitro diagnostic regulation (IVD-R laws), TP-HA will be taking its place even though it differs in sensitivity. This might effect tests with a lower titre, they might give a negative result even though the test has a low concentration of antibodies which needs to be further evaluated.
|
413 |
Mechanism of Maternal Antibody Inhibition and Vaccination Strategies in the presence of Maternal AntibodiesKim, Dhohyung 19 June 2012 (has links)
No description available.
|
414 |
Immunosuppressive protocol with delayed use of low-dose tacrolimus after aortic transplantation suppresses donor-specific anti-MHC class I and class II antibody production in ratsMatia, Ivan, Fellmer, Peter, Splith, Katrin, Varga, Martin, Adamec, Milos, Kämmerer, Ines, Feldbrügge, Linda, Krenzien, Felix, Hau, Hans-Michael, Atanasov, Georgi, Schmelzle, Moritz, Jonas, Sven January 2014 (has links)
Background: Arterial allografts are used as vascular conduits in the treatment of prosthetic graft infection. Immunosuppression
decreases their rupture risk rate. However, immunosuppression can be unprofitable in florid infection. Previously, we confirmed inhibition of cell-mediated destruction of rat aortic grafts by delayed use of tacrolimus. In this work, we studied the influence of this protocol on the antibody-mediated rejection.
|
415 |
Imunosuprese po transplantaci kryokonzervovaných tepenných alloštěpů v experimentu. / Immunosuppressive protocols after cryopreserved aortal allotransplantation in rats.Špunda, Rudolf January 2019 (has links)
The aim of our study was to simulate in rats all aspects and techniques used in our new clinical program of cryopreserved alloarterial transplantation and investigate the influence of two immunosuppressive protocols with tacrolimus on acute rejection of these allografts. Cryopreserved abdominal aortic grafts were transplanted between Brown-Norway and Lewis rats. Tacrolimus (0,2 mg/kg daily) was administered from day 1 to day 30 (TAC1) or from day 7 to day 30 (TAC7), respectively. No immunosuppressed isogeneic (ISO) and allogeneic (ALO) rats combination served as control. Aortal wall destruction and infiltration by immunocompetent cells (MHC II+ cells of recipient origin) was studied on day 30 after transplantation. Flow cytometry was used for the analysis of day 30 sera for the presence of donor specific anti-MHC class I and II antibodies. The aortal allografts in both immunosuppressed groups showed regular morphology of aortal wall with no depositions of immunoglobulin G on day 30. The adventitial infiltration of non-immunosuppressed aortal allografts by MHC class II positive cells of recipient origin was significantly higher (ALO 20,7±6,7 cells, P <0,001) compared to both immunosuppressed groups (TAC1 5,9±5,5 cells, TAC7 6,1±5,1 cells). Anti-MHC antibodies class I and II level in peripheral blood...
|
416 |
Utilizing Solid Phase Cloning, Surface Display And Epitope Information for Antibody Generation and CharacterizationHu, Francis Jingxin January 2017 (has links)
Antibodies have become indispensable tools in diagnostics, research and as therapeutics. There are several strategies to generate monoclonal antibodies (mAbs) in order to avoid the drawbacks of polyclonal antibodies (pAbs) for therapeutic use. Moreover, the growing interest in precision medicine requires a well-characterized target and antibody to predict the responsiveness of a treatment. This thesis describes the use of epitope information and display technologies to generate and characterize antibodies. In Paper I, we evaluated if the epitope information of a well-characterized pAb could be used to generate mAbs with retained binding characteristics. In Paper II, the epitope on the complement protein C5 towards Eculizumab was mapped with surface display, the results of which explained the non-responsiveness of Eculizumab treatment among a patient group due to a mutated C5 gene. With this in mind, we showed efficacy in treatment of the mutated C5 variants using a drug binding to another site on C5, suggesting that our approach can be used to guide treatment in precision medicine. In Paper III, a Gram-positive bacterial display platform was evaluated to complement existing platforms for selection of human scFv libraries. When combined with phage display, a thorough library screening and isolation of nano-molar binders was possible. In Paper IV, a solid phase method for directed mutagenesis was developed to generate functional affinity maturation libraries by simultaneous targeting of all six CDRs. The method was also used to create numerous individual mutants to map the paratope of the parent scFv. The paratope information was used to create directed libraries and deep sequencing of the affinity maturation libraries confirmed the viability of the combination approach. Taken together, precise epitope/paratope information together with display technologies have the potential to generate attractive therapeutic antibodies and direct treatment in precision medicine. / <p>QC 20170418</p>
|
417 |
A cell level automated approach for quantifying antibody staining in immunohistochemistry images : a structural approach for quantifying antibody staining in colonic cancer spheroid images by integrating image processing and machine learning towards the implementation of computer aided scoring of cancer markersKhorshed, Reema A. A. January 2013 (has links)
Immunohistological (IHC) stained images occupy a fundamental role in the pathologist's diagnosis and monitoring of cancer development. The manual process of monitoring such images is a subjective, time consuming process that typically relies on the visual ability and experience level of the pathologist. A novel and comprehensive system for the automated quantification of antibody inside stained cell nuclei in immunohistochemistry images is proposed and demonstrated in this research. The system is based on a cellular level approach, where each nucleus is individually analyzed to observe the effects of protein antibodies inside the nuclei. The system provides three main quantitative descriptions of stained nuclei. The first quantitative measurement automatically generates the total number of cell nuclei in an image. The second measure classifies the positive and negative stained nuclei based on the nuclei colour, morphological and textural features. Such features are extracted directly from each nucleus to provide discriminative characteristics of different stained nuclei. The output generated from the first and second quantitative measures are used collectively to calculate the percentage of positive nuclei (PS). The third measure proposes a novel automated method for determining the staining intensity level of positive nuclei or what is known as the intensity score (IS). The minor intensity features are observed and used to classify low, intermediate and high stained positive nuclei. Statistical methods were applied throughout the research to validate the system results against the ground truth pathology data. Experimental results demonstrate the effectiveness of the proposed approach and provide high accuracy when compared to the ground truth pathology data.
|
418 |
Humorální rejekce po transplantaci ledviny a vyšetřování protilátek proti HLA a non-HLA antigenům. / Humoral rejection after kidney transplantation and monitoring antibodies against HLA and non-HLA antigens.Valhová, Šárka January 2013 (has links)
Kidney transplantation is the treatment of choice for patients with end stage renal failure and is associated with prolonged survival of patients and better quality of life than long-term dialysis. Simultaneously, however, transplantation carries the risk of immunological complications leading to graft rejection. A serious problem in patients after organ transplantation is the development of humoral rejection, which is most often associated with the presence of antibodies specific to HLA antigens, particularly against mismatched HLA antigens of the organ donor. In certain cases antibodies may be specific to antigens expressed on endothelial cells, not on lymphocytes, like MICA, MICB, ICAM, and up till now unidentified tissue-specific antigens. Humoral rejection has significantly worse prognosis for the transplanted kidney than cellular rejection, and therefore its timely diagnosis is of great importance for the subsequent choice of appropriate therapy. The diagnosis of humoral rejection is based on the simultaneous detection of C4d deposits in the peritubular capillaries of the transplanted kidney and the finding of antibodies specific to the mismatched antigens of the donor (donor specific antibodies, DSA). The aim of our retrospective study was to contribute to improvement of the diagnosis of acute and...
|
419 |
Antibody and Antigen in Heparin-Induced ThrombocytopeniaNewman, Peter Michael, Pathology, UNSW January 2000 (has links)
Immune heparin-induced thrombocytopenia (HIT) is a potentially serious complication of heparin therapy and is associated with antibodies directed against a complex of platelet factor 4 (PF4) and heparin. Early diagnosis of HIT is important to reduce morbidity and mortality. I developed an enzyme immunoassay that detects the binding of HIT IgG to PF4-heparin in the fluid phase. This required techniques to purify and biotinylate PF4. The fluid phase assay produces consistently low background and can detect low levels of anti-PF4-heparin. It is suited to testing alternative anticoagulants because, unlike in an ELISA, a clearly defined amount of antigen is available for antibody binding. I was able to detect anti-PF4-heparin IgG in 93% of HIT patients. I also investigated cross-reactivity of anti-PF4-heparin antibodies with PF4 complexed to alternative heparin-like anticoagulants. Low molecular weight heparins cross-reacted with 88% of the sera from HIT patients while half of the HIT sera weakly cross-reacted with PF4-danaparoid (Orgaran). The thrombocytopenia and thrombosis of most of these patients resolved during danaparoid therapy, indicating that detection of low affinity antibodies to PF4-danaparoid by immunoassay may not be an absolute contraindication for danaparoid administration. While HIT patients possess antibodies to PF4-heparin, I observed that HIT antibodies will also bind to PF4 alone adsorbed on polystyrene ELISA wells but not to soluble PF4 in the absence of heparin. Having developed a technique to affinity-purify anti-PF4-heparin HIT IgG, I provide the first estimates of the avidity of HIT IgG. HIT IgG displayed relatively high functional affinity for both PF4-heparin (Kd=7-30nM) and polystyrene adsorbed PF4 alone (Kd=20-70nM). Furthermore, agarose beads coated with PF4 alone were almost as effective as beads coated with PF4 plus heparin in depleting HIT plasmas of anti-PF4-heparin antibodies. I conclude that the HIT antibodies which bind to polystyrene adsorbed PF4 without heparin are largely the same IgG molecules that bind PF4-heparin and thus most HIT antibodies bind epitope(s) on PF4 and not epitope(s) formed by part of a PF4 molecule and part of a heparin molecule. Binding of PF4 to heparin (optimal) or polystyrene/agarose (sub-optimal) promotes recognition of this epitope. Under conditions that are more physiological and sensitive than previous studies, I observed that affinity-purified HIT IgG will cause platelet aggregation upon the addition of heparin. Platelets activated with HIT IgG increased their release and surface expression of PF4. I quantitated the binding of affinity-purified HIT 125I-IgG to platelets as they activate in a plasma milieu. Binding of the HIT IgG was dependent upon heparin and some degree of platelet activation. Blocking the platelet Fc??? receptor-II with the monoclonal antibody IV.3 did not prevent HIT IgG binding to activated platelets. I conclude that anti-PF4-heparin IgG is the only component specific to HIT plasma that is required to induce platelet aggregation. The Fab region of HIT IgG binds to PF4-heparin that is on the surface of activated platelets. I propose that only then does the Fc portion of the bound IgG activate other platelets via the Fc receptor. My data support a dynamic model of platelet activation where released PF4 enhances further antibody binding and more release.
|
420 |
Towards subcellular localization of the human proteome using bioimagingStadler, Charlotte January 2012 (has links)
Since the publication of the complete sequence of the human genome in 2003 there has been great interest in exploring the functions of the proteins encoded by the genes. To reveal the function of each and every protein, investigation of protein localization at the subcellular level has become a central focus in this research area, since the localization and function of a protein is closely related. The objective of the studies presented in this doctoral thesis was to systematically explore the human proteome at the subcellular level using bioimaging and to develop techniques for validation of the results obtained. A common imaging technique for protein detection is immunofluorescence (IF), where antibodies are used to target proteins in fixated cells. A fixation protocol suitable for large-scale IF studies was developed and optimized to work for a broad set of proteins. As the technique relies on antibodies, validation of their specificity to the target protein is crucial. A platform based on siRNA gene silencing in combination with IF was set-up to evaluate antibody specificity by quantitative image analysis before and after suppression of its target protein. As a proof of concept, the platform was then used for validation of 75 antibodies, proving it to be applicable for validation of antibodies in a systematic manner. Because of the fixation, there is a common concern about how well IF data reflects the in vivo subcellular distribution of proteins. To address this, 500 proteins were tagged with green fluorescent protein (GFP) and used to compare protein localization results between IF to those achieved using GFP tagged proteins in live cells. It was concluded that protein localization data from fixated cells satisfactory represented the situation in vivo and together exhibit a powerful approach for confirming localizations of yet uncharacterized proteins. Finally, a global analysis based on IF data of approximately 20 % of the human proteome was performed, providing a first overview of the subcellular landscape in three different cell lines. It was found that the intracellular distribution of proteins is complex, with many proteins occurring in several organelles. The results also confirmed the close relationship between protein function and localization, which in a way further strengthens the accuracy of the IF approach for detection of proteins at the subcellular level. / <p>QC 20121017</p> / The Human Protein Atlas
|
Page generated in 0.058 seconds