• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Physical and Functional Characterization of the SUMO System and SUMO Chains in S. cerevisiae

Srikumar, Tharan 13 August 2013 (has links)
The ubiquitin-like proteins (Ubls) are small polypeptides that function as post-translational modifiers. Like ubiquitin, most Ubls are covalently attached to a lysine residue on target proteins. The small ubiquitin-related modifiers (SUMO) play important roles in a number of critical biological processes, such as proliferation and regulation of the cell cycle, yet their specific cellular functions have remained poorly understood. Like ubiquitin, SUMO proteins can also form oligomeric “chains”, but the functions of these structures were even less well understood. To this end, I created the first spectral library for the identification of Ub/Ubl proteins and Ub/Ubl chain linkages in mass spectrometry experiments. This tool has dramatically improved our ability to use MS to analyze the contents of biological samples for Ub and Ubls, and to identify specific types of Ub and Ubl chains in model organisms. I also used MS to conduct the first comprehensive SUMO system protein-protein interactome in any organism. In total, 452 high confidence protein-protein interactions were detected for S. cerevisiae SUMO system proteins, encompassing a total of 321 interacting partners. Yeast SUMO system components were found to interact with proteins involved in a number of different biological processes, and my mapping effort increased the number of known SUMO system interacting partners >50-fold. This study revealed that a number of transcriptional co-repressors and chromatin remodelling proteins interact physically with specific SUMO system components, with a clear division of labour between SUMO system enzymes. Finally, I conducted the first global analysis of SUMO chain function, using a combination of genetic, high-content microscopy, and high-density transcriptomics screens. Consistent with my interactomics work, this study demonstrated that inhibition of SUMO chain synthesis leads to severe chromatin condensation defects, which in-turn leads to chromosome missegregation, unscheduled transcription of stress-and nutrient-regulated genes, and aberrant intragenic transcription. Together, my work thus revealed a major role for the SUMO system in the maintenance of higher order chromatin structure and transcriptional repression.
2

Physical and Functional Characterization of the SUMO System and SUMO Chains in S. cerevisiae

Srikumar, Tharan 13 August 2013 (has links)
The ubiquitin-like proteins (Ubls) are small polypeptides that function as post-translational modifiers. Like ubiquitin, most Ubls are covalently attached to a lysine residue on target proteins. The small ubiquitin-related modifiers (SUMO) play important roles in a number of critical biological processes, such as proliferation and regulation of the cell cycle, yet their specific cellular functions have remained poorly understood. Like ubiquitin, SUMO proteins can also form oligomeric “chains”, but the functions of these structures were even less well understood. To this end, I created the first spectral library for the identification of Ub/Ubl proteins and Ub/Ubl chain linkages in mass spectrometry experiments. This tool has dramatically improved our ability to use MS to analyze the contents of biological samples for Ub and Ubls, and to identify specific types of Ub and Ubl chains in model organisms. I also used MS to conduct the first comprehensive SUMO system protein-protein interactome in any organism. In total, 452 high confidence protein-protein interactions were detected for S. cerevisiae SUMO system proteins, encompassing a total of 321 interacting partners. Yeast SUMO system components were found to interact with proteins involved in a number of different biological processes, and my mapping effort increased the number of known SUMO system interacting partners >50-fold. This study revealed that a number of transcriptional co-repressors and chromatin remodelling proteins interact physically with specific SUMO system components, with a clear division of labour between SUMO system enzymes. Finally, I conducted the first global analysis of SUMO chain function, using a combination of genetic, high-content microscopy, and high-density transcriptomics screens. Consistent with my interactomics work, this study demonstrated that inhibition of SUMO chain synthesis leads to severe chromatin condensation defects, which in-turn leads to chromosome missegregation, unscheduled transcription of stress-and nutrient-regulated genes, and aberrant intragenic transcription. Together, my work thus revealed a major role for the SUMO system in the maintenance of higher order chromatin structure and transcriptional repression.
3

Identifizierung neuer MuRF-Multiproteinkomplex assoziierter Proteine

Nowak, Marcel 31 July 2014 (has links)
Die Muscle-RING-finger (MuRF) Proteine sind E3-Ubiquitin-Ligasen, die im Muskelgewebe den Ubiquitin-Proteasom-System abhängigen Abbau von Proteinen vermitteln. MuRF1 wird in der Muskelatrophie verstärkt synthetisiert, was zu einem gesteigerten Proteinabbau und damit zum Verlust von Muskelmasse führt. Zudem sind Mäuse, denen MuRF1 fehlt vor Muskelatrophie geschützt. E3-Ubiquitin-Ligasen fungieren oftmals in Multiproteinkomplexen. Dies wurde für MuRF-Proteine bisher nicht gezeigt. Aufgrund dessen sollten neue MuRF-Multiproteinkomplex assoziierte Faktoren mittels Hefe-Zwei-Hybrid-System und SILAC AP-MS identifiziert und deren Einfluss auf die MuRF-Funktion charakterisiert werden. Es wurden sowohl neue als auch publizierte MuRF-Interaktionspartner (Iap) gefunden. Von den neu entdeckten MuRF-Iap wurde der Fokus auf WDR42A gelegt, da das Protein mit beiden Methoden identifiziert wurde und zudem funktionell hoch interessant ist. WDR42A homologe Proteine bilden zirkuläre β-Propeller Strukturen die Multiproteinkomplexe koordinieren. Die Interaktion zwischen MuRF-Proteinen und WDR42A wurde mittels Ko-IP Experimenten und Kolokalisationsstudien bestätigt. Cycloheximid-Abbau-Experimente deuten darauf hin, dass WDR42A kein MuRF1 Substrat-Protein ist. Da die MuRF-Proteine spezifisch im Muskel hergestellt werden, sollte überprüft werden ob WDR42A ebenfalls im Muskelgewebe synthetisiert wird. Es wurde gezeigt, dass WDR42A ubiquitär sowie im Muskelgewebe und in immortalisierten Muskelzellen hergestellt wird. Analog zu MuRF1 wird WDR42A in der Denervations-induzierten Skelettmuskelatrophie und der Muskelentwicklung verstärkt synthetisiert. Die Herunterregulation von WDR42A mittels siRNA in C2C12 Myotuben schützte diese Zellen vor dem Auftreten von Atrophie. Diese Ergebnisse zeigen, dass WDR42A wie MuRF1 an der Entstehung von Muskelatrophie beteiligt ist. Aufgrund der WDR42A Domänenstruktur wird vermutet, dass WDR42A als Scaffolding-Protein MuRF1-Multiproteinkomplexe reguliert. / The muscle-RING-finger (MuRF) proteins are E3 ubiquitin ligases which coordinate the ubiquitin-proteasome system dependent protein degradation in muscle tissue. MuRF1 is up-regulated under muscle atrophy conditions. This leads to enhanced proteolysis and thereby to loss of muscle mass and strength. Furthermore are MuRF1 knockout mice resistant to muscle atrophy. E3 ubiquitin ligases often operate in multi-protein complexes. This has not been shown for MuRF proteins. Therefore we used yeast-two-hybrid and SILAC-AP-MS to identify and subsequently characterize new MuRF multi-protein complex associated proteins. We found new and also published MuRF interaction partners (Iap) with both methods. Amongst the new Iap, we focused on WDR42A, because it was found with both techniques and his interesting functional potential. WDR42A exhibits seven consecutive arranged WD40-repeat domains. This domain arrangement leads in homologues proteins to the formation of seven-bladed β-propeller structures, which act as protein interaction platforms that coordinate multi-protein complexes. The protein interaction between the MuRFs and WDR42A was confirmed with Co-IP and co-localization experiments. Cycloheximide decay experiments indicated that WDR42A is not a MuRF1 substrate protein. The MuRF proteins are muscle specific, therefore we tested if WDR42A is also synthetized in muscle tissue. We could show that WDR42A is ubiquitously, but also in muscle tissue as well as in immortalized muscle cells produced. WDR42A is similar to MuRF1 up-regulated under denervation-induced skeletal muscle atrophy as well as in muscle development. Furthermore are C2C12 myotubes resistant to muscle atrophy after siRNA down-regulation of WDR42A. These results demonstrate that WDR42A is like MuRF1 important for the development of muscle atrophy. Due to the domain structure of WDR42A, we hypothesize that WDR42A regulates MuRF1 multi protein complexes as scaffolding protein.
4

Global Proteomic Assessment of Classical Protein-tyrosine Phosphatases

Karisch, Robert 20 June 2014 (has links)
Tyrosyl phosphorylation plays an important role in many fundamental cellular processes, including cell growth, differentiation and proliferation. The levels of phosphotyrosine (pY) are regulated by the opposing actions of protein-tyrosine kinases (PTKs) and protein-tyrosine phosphatases (PTPs). A limitation to understanding the roles of PTPs in physiological and pathological cell signaling has been the absence of global proteomic approaches that enable the systematic and comprehensive analysis of PTP expression, regulation and function. This dissertation describes the development and application of novel proteomic methodologies that permit the global analysis of PTP expression (qPTPome), regulation (by oxidation and nitrosylation; q-oxPTPome) and substrates/binding proteins. These methods provide a workflow to begin assessing PTP function at a systems level, rather than its current targeted format. Application of these techniques will provide invaluable information to begin bridging the gap in our understanding of PTP and PTK function in normal and malignant cell signaling.
5

Global Proteomic Assessment of Classical Protein-tyrosine Phosphatases

Karisch, Robert 20 June 2014 (has links)
Tyrosyl phosphorylation plays an important role in many fundamental cellular processes, including cell growth, differentiation and proliferation. The levels of phosphotyrosine (pY) are regulated by the opposing actions of protein-tyrosine kinases (PTKs) and protein-tyrosine phosphatases (PTPs). A limitation to understanding the roles of PTPs in physiological and pathological cell signaling has been the absence of global proteomic approaches that enable the systematic and comprehensive analysis of PTP expression, regulation and function. This dissertation describes the development and application of novel proteomic methodologies that permit the global analysis of PTP expression (qPTPome), regulation (by oxidation and nitrosylation; q-oxPTPome) and substrates/binding proteins. These methods provide a workflow to begin assessing PTP function at a systems level, rather than its current targeted format. Application of these techniques will provide invaluable information to begin bridging the gap in our understanding of PTP and PTK function in normal and malignant cell signaling.
6

A quantitative interaction screen for neurodegenerative disease proteins

Hosp, Fabian 07 February 2013 (has links)
Der erste Teil dieser Arbeit beschreibt die Durchführung eines quantitativen Ansatzes zur Detektion von Protein-Protein-Interaktionen (PPI) mit einem Schwerpunkt für Proteine, die in vier häufigen neurodegenerativen Krankheiten eine Rolle spielen: die Alzheimer-, Parkinson- und Huntington-Krankheit, sowie die spinozerebelläre Ataxie Typ 1 (SCA1). Die Interaktionsstudie kombiniert die stabile Isotopen-Markierung von Aminosäuren in der Zellkultur mit der Affinitätsaufreinigung von Proteinen und hochauflösender Massenspektrometrie. Dieser Ansatz zielt darauf ab, systematisch die Interaktionspartner von gesunden und krankheitsassoziierten Proteinvarianten zu identifizieren und zu quantifizieren. Darüber hinaus wurde das quantitative Interaktionsverfahren genutzt, um zu prüfen ob PPI durch krankheitsassoziierte Mutationen beeinträchtigt werden. Neben der Validierung möglicher Nebeneffekte, sowie dem Vergleich mit Informationen über PPI aus der Literatur, wurde ein Teil der identifizierten Interaktoren durch zusätzliche Koimmunopräzipitations-Experimente in zwei verschiedenen Zelllinien bestätigt. Mit Hilfe von Drosophila SCA1-Krankheitsmodellen und in Kombination mit RNAi-basierter Stummschaltung identifizierter Interaktoren wurde festgestellt, dass ein großer Teil der Kandidaten Neurodegeneration in vivo beeinflusst. Zusätzlich wurden die Alzheimer-spezifischen PPI-Daten auf genomweite Assoziationsstudien übertragen. Bemerkenswerterweise waren Polymorphismen in einzelnen Nukleotiden in den Genen zugehöriger Interaktoren wahrscheinlicher mit solchen Genen assoziiert, die eine Prädisposition für die Alzheimer-Krankheit haben, als mit zufällig ausgewählten Genen. Schlussendlich konnten Folgeexperimente für zwei ausgewählte Interaktionspartner den Nachweis für eine bislang unbekannte Rolle der N-Glykosylierung und einen neuen Zusammenhang zwischen dem RNA-bindenden Protein LRPPRC und mitochondrialer Dysfunktion in der Alzheimer-Krankheit vorlegen. / The first part of the present thesis describes the establishment of a quantitative protein-protein interaction (PPI) screen with a focus on proteins involved in four common neurodegenerative diseases (NDDs): Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD) and spinocerebellar ataxia type 1 (SCA1). The interaction screen combines stable-isotope labeling by amino acids in cell culture (SILAC) with protein affinity purification and high-resolution mass spectrometry. This approach aims to systematically identify and quantify interaction partners of normal and known disease-associated variants of proteins involved in NDDs. Moreover, the quantitative interaction screen was employed to study how PPIs are affected by disease-associated mutations. Along with validation of possible off-target effects and comparison of the data with literature-reported PPIs, a subset of identified interactors was validated by additional co-immunoprecipitation experiments in two different cell lines. Utilizing Drosophila models for SCA1 in combination with RNAi-mediated silencing of identified interactors, a large fraction of candidates was observed to also affect neurodegeneration in vivo. In addition, AD-specific PPI data was mapped to patient cohort data obtained from genome-wide associations studies. Notably, single-nucleotide polymorphisms in the genes of interactors of the disease-associated protein variants were more likely associated with susceptibility to AD than randomly selected genes. Finally, functional follow-ups for two selected interaction partners provided evidence for a yet unreported role of N-linked glycosylation in AD, and a novel link to mitochondrial dysfunction in AD by means of the RNA-binding protein LRPPRC.
7

The role of the CTD phosphatase Rrt1 and post-translational modifications in regulation of RNA polymerase II

Cox, Mary L. 07 July 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / RNA polymerase II (RNAPII) is regulated by multiple modifications to the C-terminal domain (CTD) of the largest subunit, Rpb1. This study has focused on the relationship between hyperphosphorylation of the CTD and RNAPII turnover and proteolytic degradation as well as post-translational modifications of the globular core of RNAPII. Following tandem affinity purification, western blot analysis showed that MG132 treated RTR1 ERG6 deletion yeast cells have accumulation of total RNAPII and in particular, the hyperphosphorylated form of the protein complex. In addition, proteomic studies using MuDPIT have revealed increased interaction between proteins of the ubiquitin-proteasome degradation system in the mutant MG132 treated yeast cells as well as potential ubiquitin and phosphorylation sites in RNAPII subunits, Rpb6 and Rpb1, respectively. A novel Rpb1 phosphorylation site, T1471-P, is located in the linker region between the CTD and globular domain of Rpb1 and will be the focus of future studies to determine biological significance of this post-translational modification.

Page generated in 0.0137 seconds