1 |
Étude de la régulation de la triglycéridémie chez l’homme par des variants codants de LMF1 et non codants d’APOC3 et LMF1 / Study of triglyceridemia regulation in humans by coding variants of LMF1 and non-coding variants of APOC3 and LMF1Dancer, Marine 07 July 2017 (has links)
L'hyperchylomicronémie est une maladie rare et complexe impliquant plusieurs gènes qui sont eux-mêmes fortement régulés par plusieurs mécanismes et dont les voies métaboliques sont étroitement dépendantes de facteurs environnementaux. La survenue de la pathologie due à la présence de variants ou d'une association de variants sur ces gènes n'est pas toujours clairement définie. Ce qui suggère l'intervention d'autres mécanismes mal élucidés dans le développement des hyperchylomicronémies et la régulation du métabolisme des triglycérides. Nous avons essayé d'appréhender certains mécanismes causals dans la survenue de l hyperchylomicronémie en lien avec la présence de variants sur les gènes régulateurs APOC3 et LMF1 du métabolisme des triglycérides. Le gène APOC3 présente le variant SstI (rs5128) en région 3' non codante associée significativement à l'hypertriglycéridémie dans notre cohorte, nous avons cherché à caractériser sa régulation post-transcriptionnelle éventuelle par des microARN hépatiques ou intestinaux. Nos résultats ne confirment pas l'hypothèse d'une régulation du variant SstI du gène APOC3 par un microARN hépatique ou intestinal ciblant directement l'extrémité 3'UTR du gène APOC3. Le gène LMF1, nouveau gène candidat pour étudier les mécanismes des hyperchylomicronémies, est encore peu investigué. Nous avons mis en place son diagnostic génétique au sein du laboratoire ainsi qu'une technique in vitro permettant d'évaluer l'impact de la présence de certains variants codants de LMF1 sur l'activité post héparinique de la lipoprotéine lipase (LPL) par mesure de la lipolyse des triglycérides des VLDL. Nous avons mis en évidence des activités LPL significativement diminuées suggérant une dysfonction de LMF1 en présence des variants p.Gly172Arg (rs201406396), p.Arg354Trp (rs143076454), p.Arg364Gln (rs35168378), et des deux variants non-sens déjà décrits p.Tyr439Ter (rs121909397) et p.Trp464Ter (rs587777626). Ces travaux permettent de confirmer l'effet fonctionnel des variants LMF1 sur la régulation de la sécrétion de la LPL. Nous avons également retrouvé dans notre cohorte de 385 patients 18 variants sur la région 3' non codante du gène LMF1. Pour les trois variants : c*231C>A (rs75476513), c*512G>A (rs117039680), et c*530G>A (rs139657279), les résultats in vitro suggèrent une régulation post transcriptionnelle par les microARN. Ce qui pourrait ainsi expliquer le mécanisme de l'association de ces variants non traduits à l'hypertriglycéridémie. Ainsi, des interrelations des multiples gènes impliqués dans le métabolisme des triglycérides et leurs régulations à plusieurs niveaux simultanés modulent le phénotype d'hyperchylomicronémie. Il est nécessaire d'étudier tous les mécanismes complexes impliqués dans la régulation de la triglycéridémie afin de mieux appréhender la physiopathologie et de développer de nouvelles cibles thérapeutiques / Hyperchylomicronemia is a rare and complex disease involving several genes which are themselves highly regulated by several mechanisms and whose metabolic pathways are closely dependent on environmental factors. The occurrence of this disease due to the presence of variants or a combination of variants on these genes is not always clearly defined. This suggests the intervention of other ill-defined mechanisms in the development of hyperchylomicronemia and the regulation of triglyceride metabolism. We have tried to understand certain causal mechanisms in the occurrence of hyperchylomicronemia in relation to the presence of variants on the APOC3 and LMF1 known regulatory genes of triglyceride metabolism. APOC3 gene carries the SstI variant (rs5128) in the 3' untranslated region significantly associated with hypertriglyceridemia in our cohort. We sought to characterize its possible post-transcriptional regulation by hepatic or intestinal microRNA. Our results obtained in vitro do not support the hypothesis of a regulation of the SstI variant of the APOC3 gene by a hepatic or intestinal microRNA directly targeting the 3'UTR of APOC3 gene. LMF1 gene, a new candidate gene for studying the mechanisms of hyperchylomicronaemias, is still under investigation. We have established its genetic diagnosis in the laboratory and set up an in vitro method to evaluate the impact of LMF1 coding variants by measuring the release of post-heparin lipoprotein lipase (LPL) activity. We found decreased LPL activities suggesting a LMF1 dysfunction in the presence of variants p.Gly172Arg (rs201406396), p.Arg354Trp (rs143076454), p.Arg364Gln (rs35168378), and the two nonsense variants already described p.Tyr439Ter (rs121909397) and p.Trp464Ter (rs587777626). This study confirms the functional effect of LMF1 variants on the regulation of LPL secretion. In addition, we found 18 variants on the 3' untranslated region of LMF1 gene. For three variants : c*231C>A (rs75476513), c*512G>A (rs117039680), and c*530G>A (rs139657279), in vitro results suggest a post-transcriptional regulation by microRNA. These findings are an involvement of these untranslated variants in the occurrence of hypertriglyceridemia.Thus, complex interrelations of multiple genes involved in triglyceride metabolism and their simultaneous multi-level regulation modulate the phenotype of hyperchylomicronemic patients. It is necessary to study all the complex mechanisms involved in the regulation of triglyceridemia in order to better understand pathophysiology of hyperchylomicronemia and to develop new therapeutic targets
|
2 |
Endogenous and exogenous factors affecting lipoprotein lipase activityLarsson, Mikael January 2014 (has links)
Individuals with high levels of plasma triglycerides are at high risk to develop cardiovascular disease (CVD), currently one of the major causes of death worldwide. Recent epidemiological studies show that loss-of-function mutations in the APOC3 gene lower plasma triglyceride levels and reduce the incidence of coronary artery disease. The APOC3 gene encodes for apolipoprotein (APO) C3, known as an inhibitor of lipoprotein lipase (LPL) activity. Similarly, a common gain-of-function mutation in the LPL gene is associated with reduced risk for CVD. LPL is central for the metabolism of lipids in blood. The enzyme acts at the endothelial surface of the capillary bed where it hydrolyzes triglycerides in circulating triglyceride-rich lipoproteins (TRLs) and thereby allows uptake of fatty acids in adjacent tissues. LPL activity has to be rapidly modulated to adapt to the metabolic demands of different tissues. The current view is that LPL is constitutively expressed and that the rapid modulation of the enzymatic activity occurs by some different controller proteins. Angiopoietin-like protein 4 (ANGPTL4) is one of the main candidates for control of LPL activity. ANGPTL4 causes irreversible inactivation through dissociation of the active LPL dimer to inactive monomers. Other proteins that have effects on LPL activity are the APOCs which are surface components of the substrate TRLs. APOC2 is a well-known LPL co-factor, whereas APOC1 and APOC3 independently inhibit LPL activity. Given the important role of LPL for triglyceride homeostasis in blood, the aim of this thesis was to find small molecules that could increase LPL activity and serve as lead compounds in future drug discovery efforts. Another aim was to investigate the molecular mechanisms for how APOC1 and APOC3 inhibit LPL activity. Using a small molecule screening library we have identified small molecules that can protect LPL from inactivation by ANGPTL4 during incubations in vitro. Following a structure-activity relationship study we have synthesized lead compounds that more efficiently protect LPL from inactivation by ANGPTL4 in vitro and also have dramatic triglyceride-lowering properties in vivo. In a separate study we show that low concentrations of fatty acids possess the ability to prevent inactivation of LPL by ANGPTL4 under in vitro conditions. With regard to APOC1 and APOC3 we demonstrate that when bound to TRLs, these apolipoproteins prevent binding of LPL to the lipid/water interface. This results in decreased lipolysis and in an increased susceptibility of LPL to inactivation by ANGPTL4. We demonstrate that hydrophobic amino acid residues that are centrally located in the APOC3 molecule are critical for attachment of this protein to lipid emulsion particles and consequently for inhibition of LPL activity. In summary, this work has identified a lead compound that protects LPL from inactivation by ANGPTL4 in vitro and lowers triglycerides in vivo. In addition, we propose a molecular mechanism for inhibition of LPL activity by APOC1 and APOC3.
|
Page generated in 0.0263 seconds