• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 25
  • 3
  • Tagged with
  • 65
  • 65
  • 43
  • 42
  • 34
  • 31
  • 21
  • 19
  • 18
  • 17
  • 15
  • 13
  • 13
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Caractérisation de la régulation de la transcription par l'ARN polymérase III chez Saccharomyces cerevisiae / Characterization of RNA polymerase III transcription regulation in Saccharomyces cerevisiae

Tavenet, Arounie 10 November 2011 (has links)
L’ARN polymérase III synthétise de nombreux petits ARN non traduits, dont les ARNt et l’ARNr 5S, essentiels à la croissance de toute cellule. Dans ce travail, nous nous sommes intéressés à la régulation de la transcription par l’ARN polymérase III chez la levure Saccharomyces cerevisiae. Nous avons détecté Sub1 sur les gènes de classe III in vivo. Nous avons également observé que Sub1 est capable de stimuler la transcription par l’ARN III reconstituée in vitro avec les facteurs TFIIIB et TFIIIC recombinants et avec l’ARN Pol III purifiée. Sub1 stimule deux étapes de la transcription : l’initiation et la réinitiation facilitée. Des expériences supplémentaires nous montrent que la protéine interagit directement avec TFIIIB et TFIIIC. Enfin, nous avons pu constater que la délétion de Sub1 dans la levure conduit à une diminution de la transcription par l’ARN Pol III en phase exponentielle de croissance. Par la suite, nous avons cherché à déterminer quel lien pouvait exister entre l’activateur Sub1 et le répresseur Maf1 de la transcription par l’ARN Pol III. Enfin, nous avons également souhaité identifier d’autres éléments pouvant interagir avec la protéine Sub1 au cours de sa fonction de régulateur. / RNA polymerase III synthetizes many small untranslated RNA, including tRNA and 5S rRNA which are essential to cell growth. In this work, we took an interest in RNA polymerase III transcription regulation in the baker’s yeast, Saccharomyces cerevisiae. We have detected Sub1 on all class III genes in vivo. We also observed that Sub1 is able to stimulate RNA polymerase III transcription which has been reconstituted in vitro with TFIIIB et TFIIIC recombinants factors and purified RNA polymerase III. Sub1 stimulates two steps of RNA polymerase III transcription : initiation and facilitated reinitiation. Supplementary experiments established that Sub1 directly interacts with TFIIIB and TFIIIC transcription factors. Finally, we showed that Sub1 deletion in yeast leads to a decrease in RNA polymerase III transcription during exponential phase. Then, we tried to determine which link could exist between Sub1, the activator, and Maf1, the repressor of RNA polymerase III transcription. Furthermore, we attempted to identify other elements which could interact with Sub1 during transcription regulation.
12

Conséquence physiologiques et mécanistiques de l'intéraction covalente du facteur Rm3 avec l'ARN polymérase I chez la levure Saccharomyces cerevisiae

Ayoub, Nayla 23 September 2009 (has links) (PDF)
Chez les Eucaryotes, la transcription du génome nucléaire est assurée par trois formes d'ARN polymérase ADN dépendantes (Pol I, II et III) qui transcrivent chacune une classe spécifique de gènes. Ainsi, la Pol I transcrit uniquement le gène codant le précurseur des grands ARN ribosomiques. La transcription Pol I est extrêmement active et représente plus de 60% de l'activité transcriptionnelle totale de la cellule en phase exponentielle de croissance. La transcription nucléaire dans sa globalité est réprimée dans de nombreuses conditions, notamment lors d'une carence en nutriments (qui peut être mimée par un traitement à la rapamycine). Nous avons étudié chez la levure S. cerevisiae les effets de traitements longs à la rapamycine sur la transcription Pol I. Grâce à une souche mutante de levure (souche CARA) dans laquelle la Pol I est constitutivement active, nous avons montré que le niveau de transcription Pol I contrôle le niveau de biogenèse des ribosomes. En présence de rapamycine et pour des temps courts de traitement, la répression de la transcription Pol I est atténuée dans la souche CARA par rapport à la souche sauvage (WT). Cependant, au bout de 4h de traitement, le niveau de transcription devient non détectable dans les deux souches et, de façon remarquable, la structure du nucléole est conservée dans la souche CARA alors que le nucléole est totalement déstructuré dans la souche WT. Des expériences d'immunoprécipitation de la chromatine et des analyses par Miller spread ont permis de montrer que même après 4h de traitement à la rapamycine, la Pol I reste associée à l'ADNr dans les cellules CARA, alors que dans les cellules WT, une très forte diminution de l'occupation de l'ADNr par la Pol I est observée dès quelques minutes de traitement. Ces données constituent la première demonstration d'un découplage entre l'activité de transcription Pol I et le maintien de l'intégrité de la structure du nucléole. Dans une deuxième partie nous avons initié l'étude mécanistique de la transcription Pol I in vitro afin de déterminer les conséquences sur les différentes étapes du cycle transcriptionnel de l'association covalente du facteur Rrn3 avec l'enzyme. La seule différence entre les cellules WT et CARA étant a priori que le complexe Pol I-Rrn3 n'est pas dissociable dans la souche CARA. Nos résultats suggèrent un modèle selon lequel le complexe Pol I-Rrn3 se dissocie très rapidement lors de l'étape d'initiation. Cette dissociation est une étape nécessaire pour que l'ADNr 35S soit transcrit efficacement.
13

Etude à grande échelle du rôle de TFIIS et de ses partenaires dans la transcription chez les eucaryotes

Ghavi-Helm, Yad 25 September 2009 (has links) (PDF)
Au cours de ma thèse, je me suis intéressée au facteur de transcription TFIIS, un facteur d'élongation de l'ARN polymérase II impliqué dans la stimulation de l'activité de clivage intrinsèque de cette enzyme. L'étude de la localisation globale du facteur TFIIS sur le génome de Saccharomyces cerevisiae par ChIP-on-chip a révélé que TFIIS, en plus d'être présent sur les gènes de classe II (ie. transcrits par l'ARN polymérase II), est également présent sur l'ensemble des transcrits de classe III (ie. transcrits par l'ARN polymérase III), suggérant ainsi un rôle jusqu'alors inconnu de cette protéine dans la transcription par l'ARN polymérase III. Des expériences de génomique, de génétique et de biochimie nous ont permis de montrer que TFIIS est un facteur de transcription de l'ARN polymérase III impliqué dans le choix du site d'initiation de la transcription. Par la suite, j'ai souhaité poursuivre cette étude chez Mus musculus, afin de déterminer, entre autres, si le rôle de TFIIS dans la transcription par l'ARN polymérase III est conservé chez les eucaryotes pluricellulaires. Des expériences préliminaires révèlent que Tcea1, l'une des isoformes de TFIIS chez M. musculus, serait présent sur quelques gènes de classe II et III. Lors de ma thèse, j'ai également pris part à deux autres projets en cours dans le laboratoire. L'un a porté sur le rôle du Médiateur, un complexe multiprotéique coactivateur de la transcription par l'ARN polymérase II, dans la mise en place du complexe de préinitiation via le recrutement du facteur TFIIH. Le second projet a permis de montrer que l'ARN polymérase II agit comme un senseur de la disponibilité en nucléosides triphosphates dans la cellule.
14

Etude structurale sur les sous-unités τ60/τ91 du facteur de transcription IIIC de la levure.

Mylona, Anastasia 18 July 2005 (has links) (PDF)
TFIIIC est un facteur de transcription de classe III qui se lie spécifiquement et de façon stable sur les boîtes A et B des promoteurs des gènes de l'ARNt. TFIIIC est composé de 6 sous-unités: τ138, τ131, τ95, τ91, τ60 et τ55. Ce travail présente la structure du complexe entre τ60 et la partie C-terminale de τ91 (Δτ91) qui a été résolue à 3.2 Å. La structure comporte trois régions. a) Δτ91 qui est un β-propeller; b) une partie N-terminale de τ60 qui est aussi un β-propeller et qui se trouve entre Δτ91 et c) le domaine C-terminal de τ60, qui a un nouveau rempliement. L'interaction entre Δτ91 et τ60 est formée par les deux β-propellers et la partie C-terminale de τ60 est complètement indépendante. Cette nouvelle interaction β-propeller - β-propeller apparaît importante pour l'assemblage d'un complexe τB stable, capable de se fixer à l'ADN. Nos résultats donnent des informations sur le mécanisme d'assemblage du complexe τB et sa liaison à l'ADN.
15

Etude de la dynamique d'activation de la transcription des gènes par l'ARN Polymerase2

Causse, Sébastien 07 November 2011 (has links) (PDF)
Un des aspects essentiels du vivant est la capacité de controler spatialement et temporellement l'expression génétique, et ce d'une façon très précise. La portion transcrite du génôme de chaque être vivant varie continuellement en fonction du temps, mais est également dictée par l'environnement de la cellule, qu'elle soit d'organisme unicellulaire, pluricellulaire, prokaryote ou eukaryote. Un défaut dans le contrôle de la transcription peut avoir des conséquences particulièrement dangereuses, allant de la mort cellulaire à la prolifération non contrôlée, en passant par les cas de réponses inadaptées à un signal environnant, par exemple certains diabètes. La transcription est la première étape de l'expression génétique. A ce titre ce processus a été fortement étudié, sous de très nombreux aspects. Notamment, la dynamique et le contrôle de la transcription a été l'objet de nombreuses recherches in vitro et in vivo. Cependant, de très nombreuses questions demeurent, en particulier en ce qui concerne le contrôle dynamique de l'activation de la transcription. Cette thèse récapitule mes 4 dernières années de travail dans ce domaine. Nous avons choisi de mener une étude de la transcription axée quasi-exclusivement sur des techniques de pointe en microscopie à fluorescence. En effet, la microscopie offre la possibilité d'étudier in vivo un phénomène avec une résolution temporelle inaccessible par d'autres moyens. Par ailleurs, la microscopie permet également de franchir la barrière du " biais de moyenne " qui existe lorsque l'on étudie un échantillon. Cela devient possible tout simplement parce que la microscopie permet d'étudier chaque cellule d'un même échantillon de façon indépendante, permettant ainsi d'étudier les disparités au sein même d'un éhantillon, et notamment d'observer des phénomènes exceptionnels qui seraient passés inaperçus avec des methodes biochimiques. Cette thèse decrit les methodologies qui ont été développées durant ces 4 dernières années, les résultats que ces nouvelles techniques nous ont permis d'obtenir, et discutera des questions et des possibilités soulevées par ces résultats
16

Interaction du snARN U1 de l'épissage avec l'ARN polymérase II

Spiluttini, Béatrice 24 March 2009 (has links) (PDF)
Les ARNs non codants sont des régulateurs de l'expression génétique à plusieurs niveaux. Chez la bactérie et chez la souris, des ARNs non codants (6S et B2) ont la propriété de se lier à l'ARN polymérase et d'inhiber son activité. Afin de déterminer si l'ARN polymérase II (RNAPII) humaine était associée à des ARNs non codants, une immunoprécipitation anti-RNAPII a été réalisée sur des cellules HeLa mitotiques. Les ARNs co-immunoprécipités ont été purifiés et marqués et l'ARN U1 s'est trouvé particulièrement enrichi par rapport au contrôle. Cette co-immunoprécipitation reflète l'association de la snRNP U1 avec la RNAPII. Pour vérifier cette association sur un site de transcription actif, des lignées ont été établies avec l'insertion en multiples copies d'un gène à un site unique, créant ainsi un unique super site de transcription visualisable par FISH (Fluorescence In Situ Hybridization). Deux lignées distinctes ont été créées, l'une avec un gène comportant un intron, l'autre avec le même gène où l'intron comporte trois mutations ponctuelles abolissant l'épissage. Alors que les snARNs U2, U4, U5 et U6 sont absents du site non épissé, l'ARN U1 est enrichi de la même façon indépendamment de l'épissage. La présence des protéines spécifiques de la snRNP U1 indique que la snRNP U1 est recrutée au complet au site de transcription. Ces résultats laissent supposer un rôle pour l'association RNAPII - U1snRNP dans l'épissage cotranscriptionnel.
17

Localisation de l'ARN polymérase II humaine à travers le génome en couplant double immunoprécipitation de la chromatine et clonage

Côté, Pierre January 2005 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
18

Inhibiteurs de la transcription bactérienne : étude du mécanisme d'action de la lipiarmycine et dépendance au facteur de transcription σ / Inhibitors of bacterial transcription : study of the mechanism of action of lipiarmycin and dependence on transcription factor σ

Tupin, Audrey 19 November 2010 (has links)
Le nombre croissant de bactéries résistantes aux antibiotiques et le problème des cellules persistantes rend urgent le développement de nouveaux antibiotiques et la compréhension de leur mécanisme d'action. L'ARN polymérase est l'enzyme centrale de la transcription et est une cible intéressante pour les antibiotiques. Dans cette étude, nous nous sommes particulièrement intéressés à un inhibiteur de l'ARN polymérase : la lipiarmycine. Il s'agit d'un inhibiteur de la transcription macrocyclique qui inhibe les bactéries à Gram + et qui est en essai clinique de phase III pour le traitement des infections liées à Clostridium difficile. L'objectif de ce travail a été de déterminer le mécanisme d'action de la lipiarmycine ainsi que le mécanisme de résistance à la molécule. Pour cela, nous avons dans un premier temps précisé et modélisé son site de liaison sur l'ARN polymérase. Puis, dans un deuxième temps, nous avons utilisé des approches génétiques et biochimiques afin de déterminer son mécanisme et l'effet de certaines mutations sur la transcription. Ces travaux ont mis à jour un nouveau mécanisme d'inhibition de la transcription. / The growing number of antibiotic-resistant bacteria added to the problem caused by persistent cells stress the need for developing new antibiotics and for understanding their mechanism of action. RNA polymerase is the main enzyme of the transcription process and is an interesting target for antibiotics. In this study we focus on a particular inhibitor of RNA polymerase : lipiarmycin. It is a macrocyclic inhibitor of transcription inhibiting Gram + bacteria that is developed in phase III clinical trials for treatment of Clostridium difficile infections. The objective of this work was to determine the mechanism of action of lipiarmycin and the mechanism confering resistance against the molecule. We first define more precisely its binding site on RNA polymerase and then used genetic and biochemical approaches to determine its mechanism of action and the effect of some specific mutations on transcription. Our experiments reveal a new mechanism of t ranscription inhibitor action.
19

Etude fonctionnelle des sous-unités hRPC62 et hRPC39 de l’ARN Polymérase III humaine / Functional study of human RNA Polymerase III subunits hRPC62 and hRPC39

El Ayoubi, Leyla 17 January 2014 (has links)
Dans les cellules eucaryotes, la transcription de l’ADN nucléaire est effectuée grâce à trois ARN Polymérases ADN dépendantes (Pol). La Pol I transcrit les ARN ribosomaux, la Pol II produit essentiellement des ARN messagers et des micro ARN alors que la Pol III transcrit des petits ARN non traduits impliqués dans une variété de processus cellulaires essentiels tels que la traduction, l’épissage ou la régulation de la transcription. L’ARN Polymérase III humaine est un complexe enzymatique constitué de 17 sous-unités dont la plupart sont apparentées à des sous-unités de la Pol I et/ou la Pol II. Une de ces sous-unités, hRPC32 est présente sous forme de deux paralogues α et β codés par deux gènes différents où hRPC32β est exprimée de façon ubiquitaire alors que hRPC32α est exprimée spécifiquement dans les cellules transformées ou non différenciées. Au sein de la Pol III, hRPC32α/β, hRPC62 et hRPC39 forment un sous-complexe ternaire stable dissociable de l’enzyme. Ces trois sous-unités sont spécifiques à la Pol III et sont impliquées dans l’étape d’initiation de la transcription. L’objectif de ce travail de thèse est d’éclaircir les mécanismes de fonctionnement du sous-complexe hRPC62-hRPC39-hRPC32α/β. Le travail réalisé a permis, dans un premier temps, de cartographier les domaines d’interaction entre la sous-unité hRPC62 et les deux paralogues α et β de la sous-unité hRPC32. Ensuite, nous avons mené une analyse biochimique des activités enzymatiques des protéines recombinantes de hRPC62 et hRPC39. Cette analyse a montré que hRPC62 possède des homologies fonctionnelles avec TFIIEα, un facteur de transcription de l’ARN Polymérase II récemment décrit comme étant un homologue structural de la sous-unité hRPC62. Ces données supportent le modèle suggérant que certaines sous-unités des ARN Polymérases peuvent être considérées comme des facteurs de transcription recrutés de façon permanente à l’enzyme. / In eukaryotes, nuclear transcription is carried out by DNA dependent RNA polymerases (Pol) I, II and III. Pol I transcribes ribosomal RNA’s, Pol II produces essentially messenger and micro RNA’s whereas Pol III transcribes small untranslated RNA’s involved in a variety of cellular processes such as translation, splicing or the regulation of transcription. Human Pol III is a multi-subunit enzyme composed of 17 subunits. The majority of these subunits are homologous or closely related to Pol II and/or Pol I subunits. However, five subunits are specific to Pol III with no counterparts in Pol I or Pol II. One of the Pol III specific subunits, hRPC32 has two paralogues, α and β, expressed from two different genes. hRPC32β is expressed ubiquitously while hRPC32α expression is specific to transformed or non-differentiated cells. Within the Pol III enzyme, hRPC32α or β associate with two other Pol III specific subunits, hRPC62 and hRPC39, to form stable ternary sub-complexes thought to be implicated in transcription initiation. The purpose of this work was to clarify the functional mechanism of hRPC32α/β-hRPC62-hRPC39 sub-complexes. In this study, we first mapped the protein-protein interaction of hRPC62 with hRPC32α and hRPC32β. Second, we performed a biochemical study of hRPC62 and hRPC39 enzymatic activities. This analysis showed that hRPC62 has functional homologies with TFIIEα, a Pol II transcription factor recently described as a structural homolog of hRPC62. These results support the model that certain RNA polymerase subunits can be considered as transcription factors that have been stably recruited to the enzyme.
20

Étude de la synthèse totale de la ripostatine A / Study of the total synthesis of ripostatin A

Hemmery, Hélène 28 November 2014 (has links)
Cette thèse est consacrée à l’étude de la synthèse totale de la ripostatine A, un antibiotique inhibiteur de l’ARN polymérase des bactéries, isolé en 1995 à partir de la myxobactérie Sorangium cellulosum. La ripostatine A est caractérisée par une lactone à 14 chaînons et un lactol à 6 chaînons ; elle comporte trois doubles liaisons et trois centres stéréogènes. Les deux voies de synthèse envisagées de la ripostatine A comportaient comme étapes clés une cycloaddition 1,3-dipolaire d’oxyde de nitrile et une macrolactonisation. Des accès stéréocontrôlés à deux précurseurs importants comportant un motif 1,4-diène ont été développés, notamment à l’aide d’une carboalumination d’alcyne. Des β-hydroxycétones, précurseurs avancés dans la synthèse, ont été obtenues à partir de ces 1,4 diènes. Un couplage de Stille, entre un alcénylstannane qui a été synthétisé et un halogénure dérivé d’une des β-hydroxycétones préparées, reste à réaliser afin d’assembler le squelette de la ripostatine A. / This thesis is dedicated to the study of the total synthesis of ripostatin A, an antibiotic which inhibits eubacterial RNA polymerase, isolated in 1995 from the myxobacteria Sorangium cellulosum. Ripostatin A is characterized by a 14 membered lactone and a 6 membered lactol, it contains three double bonds and three stereogenic centers. The two synthetic routes envisaged for ripostatin A included as key steps a nitrile oxide 1,3 dipolar cycloaddition and a macrolactonisation. Stereocontroled accesses to two important precursors containing a 1,4-diene moiety were developed, using in particular an alkyne carboalumination. Advanced precursors, β-hydroxyketones, were obtained from these 1,4 dienes. A Stille coupling between a synthesized stannane and an halide derived from one of the β-hydroxyketones, remains to be realized in order to assemble the skeleton of ripostatin A.

Page generated in 0.431 seconds