• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 1
  • Tagged with
  • 7
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanisms and modulation of neuropathic pain by neurotrophin-3

Wilson-Gerwing, Tracy 10 July 2007
Neuropathic pain is a complex clinical syndrome characterized by increased sensitivity to thermal and/or mechanical stimuli that may or may not be accompanied by the phenomenon of spontaneous or aberrant pain sensations. <p>Over the past decade, the mechanisms underlying the behavioral manifestations of inflammatory neuropathic pain have become more clearly elucidated. These include the involvement of: 1) transient receptor potential vanilloid receptor 1 (TRPV1) in the generation of thermal hyperalgesia; 2) acid sensing ion channel 3 (ASIC3) in some aspects of the development/maintenance of mechanical hypersensitivity; 3) the tetrodotoxin resistant sodium channels Nav1.8 and Nav1.9 in both hyperalgesia and spontaneous pain; and 4) activation of the MAP Kinases p38 and ERK1/2 in the regulation of expression of the aforementioned molecules.<p>Interestingly, it is the pro-inflammatory neurotrophin nerve growth factor (NGF) that is the common link between all of these mediators of neuropathic pain. Increased availability of NGF under conditions of inflammation has been shown to drive increased expression/upregulation of TRPV1, ASIC3, Nav1.8 and Nav1.9, as well as phospho-p38 and phospho-ERK1/2.<p>Evidence presented here continues to support a role for neurotrophin-3 (NT-3) in antagonizing the effects of increased NGF on trkA signaling, neuropathic pain behaviors and some of the molecules associated with the generation of such behaviors.<p>More specifically, the work culminating in this thesis demonstrates a novel role for NT-3 in negative modulation of TRPV1, ASIC3, Nav1.8 and Nav1.9, as well as phospho-p38 expression in response to the chronic constriction injury model of neuropathic pain. Finally, initial insights into how this negative regulation of these nociceptive markers might occur is elucidated in studies demonstrating that NT-3 differentially affects levels of the key signaling molecule phospho-ERK in trkA-positive versus trkC-positive neurons in naïve dorsal root ganglia (DRG).
2

Mechanisms and modulation of neuropathic pain by neurotrophin-3

Wilson-Gerwing, Tracy 10 July 2007 (has links)
Neuropathic pain is a complex clinical syndrome characterized by increased sensitivity to thermal and/or mechanical stimuli that may or may not be accompanied by the phenomenon of spontaneous or aberrant pain sensations. <p>Over the past decade, the mechanisms underlying the behavioral manifestations of inflammatory neuropathic pain have become more clearly elucidated. These include the involvement of: 1) transient receptor potential vanilloid receptor 1 (TRPV1) in the generation of thermal hyperalgesia; 2) acid sensing ion channel 3 (ASIC3) in some aspects of the development/maintenance of mechanical hypersensitivity; 3) the tetrodotoxin resistant sodium channels Nav1.8 and Nav1.9 in both hyperalgesia and spontaneous pain; and 4) activation of the MAP Kinases p38 and ERK1/2 in the regulation of expression of the aforementioned molecules.<p>Interestingly, it is the pro-inflammatory neurotrophin nerve growth factor (NGF) that is the common link between all of these mediators of neuropathic pain. Increased availability of NGF under conditions of inflammation has been shown to drive increased expression/upregulation of TRPV1, ASIC3, Nav1.8 and Nav1.9, as well as phospho-p38 and phospho-ERK1/2.<p>Evidence presented here continues to support a role for neurotrophin-3 (NT-3) in antagonizing the effects of increased NGF on trkA signaling, neuropathic pain behaviors and some of the molecules associated with the generation of such behaviors.<p>More specifically, the work culminating in this thesis demonstrates a novel role for NT-3 in negative modulation of TRPV1, ASIC3, Nav1.8 and Nav1.9, as well as phospho-p38 expression in response to the chronic constriction injury model of neuropathic pain. Finally, initial insights into how this negative regulation of these nociceptive markers might occur is elucidated in studies demonstrating that NT-3 differentially affects levels of the key signaling molecule phospho-ERK in trkA-positive versus trkC-positive neurons in naïve dorsal root ganglia (DRG).
3

Rôles et régulations des canaux ioniques ASIC3 dans la douleur / Roles and regulation of ion channel ASIC3 in pain

Delaunay, Anne 30 October 2013 (has links)
Les douleurs chroniques, d’origine inflammatoire, neuropathique ou incisionnelle, affectent environ 20 % de la population adulte et jusqu’à 50 % de la population âgée. Elles représentent ainsi un véritable enjeu de santé publique. Malgré l’existence de grandes familles d’analgésiques, les traitements restent souvent inefficaces. Cela est dû en grande partie à un manque de connaissances des mécanismes physiopathologiques de la douleur. Durant ma thèse, je me suis intéressée aux rôles et aux régulations de senseurs moléculaires de la douleur récemment mis en évidence: les canaux ioniques ASIC (« Acid Sensing Ion Channels »). Les ASIC forment une famille de canaux cationiques, excitateurs. Les canaux ASIC3, en particulier, sont présents dans les neurones sensoriels qui innervent la peau, les muscles, les viscères et les articulations. Ils sont activés par de faibles acidifications extracellulaires qui se produisent au cours de nombreux mécanismes physiopathologiques comme l’inflammation, l’ischémie, le développement tumoral, ou encore les lésions tissulaires consécutives, par exemple, à une chirurgie. Dans une première étude, nous avons montré que les canaux ASIC3 jouent un rôle primordial dans le développement des douleurs post-opératoires, notamment dans les douleurs posturales, proches des cas cliniques. A partir d’un modèle d’incision plantaire chez le rat, nous avons mis en évidence une surexpression des canaux ASIC3 dans les neurones sensoriels qui innervent la patte opérée. L’inhibition pharmacologique (toxine) et génique (siARN) d’ASIC3 in vivo réduit le comportement douloureux. Notre seconde étude a porté sur le canal ASIC3 humain, peu étudié jusqu’ici. J’ai démontré que ce canal possède une propriété originale et inductible qui lui confère une sensibilité, non seulement à l’acidification, mais également à l’alcalinisation extracellulaire. Cette sensibilité alcaline est une caractéristique intrinsèque du canal. Elle implique deux résidus arginine spécifiques à la protéine humaine et présents sur sa boucle extracellulaire. Le canal ASIC3 humain, en adaptant son activité à différents environnements de pH, pourrait ainsi participer à la régulation fine du potentiel de membrane et à la sensibilisation neuronale. Plus récemment, j’ai étudié la régulation du canal ASIC3 par des lipides inflammatoires et ses conséquences sur la douleur. De manière très intéressante, je démontre que la lysophosphatidylcholine (LPC), un lipide issu de la dégradation membranaire lors de processus inflammatoires, est un nouvel activateur du canal ASIC3 en conditions normales de pH. De plus, en synergie avec une acidose modérée (pH 7,0), la LPC et son analogue non métabolisable produisent une douleur spontanée chez les rats, qui est réduite en présence de toxine inhibitrice d’ASIC3. / Chronic, inflammatory, neuropathic, or incisional pain is affecting about 20 % of the adult population and up to 50 % of the elderly population. It thus represent a real public health issue. Despite the existence of large families of analgesics, treatments are often ineffective. This is due in large part to a lack of knowledge of the patho-physiological mechanisms of pain. During my PhD, I have been interested in the roles and regulation of molecular sensors of the pain recently highlighted: ion channels (ASICs "Acid Sensing Ion Channels "). ASICs constitute a family of excitatory cationic channels. The ASIC3 channels, in particular, are present in sensory neurons that innervate the skin, muscles, organs and joints. They are activated by low extracellular acidification occurring in many patho-physiological mechanisms such as inflammation, ischemia, tumor growth, or the subsequent tissue damage, for example, surgery. In a first study, we showed that ASIC3 channels play a crucial role in the development of post -operative pain, including postural pain, close to clinical cases. From a plantar incision model in rats, we demonstrated an over-expression of ASIC3 channels in sensory neurons innervating the operated hindpaw. Pharmacological inhibition (with toxin) and invalidation (siRNA) of ASIC3 in vivo reduce pain behavior. Our second study focused on the human ASIC3 channel, not yet extensively studied. I demonstrated that this channel has a unique and inducible property which gives it a sensitivity not only to acidification, but also to the extracellular alkalinization. This alkaline sensitivity is an intrinsic characteristic of the channel. It involves two specific arginine residues in the human channel that are present in its extracellular loop.Thus the human ASIC3 channel adapts its activity at different pH environments, and could participate in the fine regulation of membrane potential and neuronal sensitization. More recently, I have studied the regulation of ASIC3 channel by inflammatory lipids and there effects on pain. Interestingly, I showed that lysophosphatidylcholine (LPC), a lipid produced from the degradation of the membrane during inflammation, is a new activator of ASIC3 channel under normal pH conditions. Moreover, in synergy with moderate acidosis (pH 7.0), the LPC and its non-metabolizable analogue produce spontaneous pain in rats. This pain is reduced in the presence of the ASIC3 inhibitory toxin.
4

Régulation des canaux ASIC par les lipides et la température – Conséquences sur les perceptions sensorielles et douloureuses / Regulation of ASIC channels by lipids and temperature – Consequences on sensory and painful perceptions

Marra, Sébastien 19 July 2017 (has links)
Les canaux ASIC3 (« Acid-Sensing Ion Channel 3) sont des canaux ioniques excitateurs qui appartiennent à la famille des ASIC (ASIC1-4). Ils sont activés par une acidose extracellulaire et le proton reste jusqu’à présent leur seul activateur endogène. Les ASIC3 sont notamment exprimés dans les neurones sensoriels périphériques innervant la peau, les muscles, les viscères et les articulations. Ils ont été impliqués dans la détection de différents types de douleur, tels que les douleurs inflammatoires, postopératoires et articulaires. Durant ma thèse, j’ai étudié la régulation des canaux ASIC3 et leur implication dans les perceptions sensorielles et douloureuses. La première partie de mon travail de thèse a permis de mettre en évidence pour la première fois de nouveaux activateurs endogènes des canaux ASIC3, différents des protons. En effet, j’ai pu démontrer que des lipides (i.e., la lysophosphatidylcholine et l’acide arachidonique) présents dans les liquides synoviaux issus de patients souffrants de différentes pathologies articulaires douloureuses, étaient capables d’activer les canaux ASIC3 sans acidification extracellulaire. Ces lipides sont capables de générer un comportement douloureux chez les rongeurs, qui implique au moins en partie les canaux ASIC3. Lors de la seconde partie de ma thèse je me suis intéressé à la régulation des canaux ASIC3 par la température. J’ai pu montrer que ces canaux sont activés par une température froide (i.e., 15°C) à pH physiologique. Ces résultats sont renforcés par des expériences de comportement, in vivo, qui montrent une implication d’ASIC3 dans la perception du froid nocif et non nocif. / Acid-Sensing Ion channel 3 (ASIC3) is a member of the ASIC family (ASIC1-4), which are excitatory ion channels activated by extracellular acidosis. Proton remains so far the unique endogenous activator of ASIC. ASIC3 channels are expressed in peripheral sensory neurons which innervate skin, muscles, viscera and joints. In rodents, they have been reported to be involved in the detection of different types of pain, including inflammatory pain, postoperative pain and arthritis. During my thesis, I studied the regulation of ASIC3 channels and their involvement in sensory and painful perceptions. The first part of my thesis project allowed the discovery for the first time of new endogenous activators of ASIC3 channels, which differ from protons. I demonstrated that lipids (i.e., lysophosphatidylcholine and arachidonic acid) present in human painful synovial fluids from patient with different joint pathologies, are able to activate ASIC3 channels without any extracellular acidification. These lipids are able to generate an acute painful behavior in rodents mediated, in a large part, by ASIC3. During the second part of my thesis I was interested by the regulation of ASIC3 channels by temperature. I demonstrated that these channels are activated by cold temperature (i.e., 15°C) at physiological pH. These results are reinforced by behavior experiments, showing an implication of ASIC3 in the perception of noxious and innocuous cold.
5

La douleur chronique articulaire dans la polyarthrite rhumatoïde : rôle des canaux ASIC3 dans l'athralgie induite par les ACPA et des voies de signalisation NGF/TrkA dans la douleur chronique inflammatoire / Joint chronic pain in rheumatoid arthritis : role of ASIC3 in ACPA-induced arthralgia and NGF/TrkA pathways in inflammatory chronic pain

Delay, Lauriane 30 November 2018 (has links)
La polyarthrite rhumatoïde est une pathologie auto-immune qui affecte près de 1% de la population mondiale et se caractérise par une inflammation articulaire, des altérations cartilagineuses et osseuses notamment associées à des douleurs chroniques articulaires, souvent résistantes aux thérapeutiques actuelles. Que ce soit à un stade préclinique, où l’on parle d’arthralgie, ou à un stade établi de la pathologie, ces douleurs constituent un réel handicap pour les patients atteints avec plus de 60% d’entre eux insatisfaits de sa prise en charge. La présence d’une synovite étant nécessaire au diagnostic de la PR, aucune stratégie thérapeutique n’est mise en place à un stade préclinique. En outre, à un stade établi, la stratégie actuelle vise en premier lieu à diminuer l’activité de la pathologie sans prise en charge de la douleur en tant que telle. Parmi les acteurs de la synovite dans la PR, un rôle essentiel est attribué au facteur de croissance des nerfs ou Nerve Growth Factor dans la mise en place et le maintien des symptômes douloureux. Les anti-NGF sont connus comme des molécules antalgiques prometteuses. Néanmoins, de par son action pléiotropique, cibler cette neurotrophine conduit à des effets indésirables potentiellement importants. Dans la première partie de ce travail, nous avons cherché à mieux caractériser l’implication spécifique des voies de signalisation intracellulaires au récepteur tyrosine kinase de type A (TrkA) de haute affinité au NGF, dans un contexte de douleur articulaire inflammatoire (arthrite) mais aussi de douleurs somatique et viscérale. Un modèle de knock-out total pour le récepteur TrkA n’étant pas viable, nous avons réalisé une étude multimodale chez des souris knock-in TrkA/C, exprimant un récepteur chimérique composé de la partie extracellulaire native du récepteur TrkA et des parties transmembranaire et intracellulaire fonctionnelles du récepteur à la neurotrophine 3 : le récepteur TrkC. Ce dernier n’étant que peu ou pas impliqué dans la douleur inflammatoire. Ainsi, le NGF pourra se lier normalement au récepteur TrkA/C mais activera les voies de signalisation intracellulaires du récepteur TrkC. Les résultats de nos études ont mis en évidence qu’une absence d’activation de certaines voies en aval de TrkA (i.e. c-Jun et p38 MAPK) au niveau des DRGs chez les souris TrkA/C, impacte significativement la mise en place des symptômes douloureux, en particulier l’hypersensibilité mécanique, que ce soit dans un contexte de douleur articulaire, somatique ou viscérale, sans affecter l’hyperalgie thermique au chaud. Ces résultats résultent d’une part de la diminution de la néo-innervation CGRP+ mais aussi de changements transcriptionnels de certains neurotransmetteurs et mécanotransducteurs dont le canal ionique sensible aux protons : ASIC3. De plus, un lien entre NGF/TrkA et le remodelage osseux, en particulier, l’activation ostéoclastique, a été démontré mettant en avant un rôle doublement bénéfique de l’inhibition de certaines voies associées à TrkA, à la fois dans certains symptômes douloureux et l’érosion osseuse retrouvée dans la PR. Dans un deuxième temps, nous nous sommes intéressés aux mécanismes impliqués dans l’arthralgie induite par l’injection d’autoanticorps anti-peptides citrullinées (ACPA). La majorité des patients PR sont positifs pour les ACPA qui peuvent être produits des mois voire des années, avant son diagnostic et semblent être directement associés au développement des symptômes douloureux. Cette arthralgie constitue l’un des premiers signes d’une PR émergente et peu persister, même suite à la prise en charge thérapeutique des patients PR. Tout d’abord, nous avons confirmé que les sous-types monoclonaux IgG1 ACPA diffèrent par leurs propriétés pronociceptives et érosives de l’os, certainement liées à leurs différentes réactivités vis-à-vis des épitopes citrullinés. (...) / Rheumatoid arthritis is an autoimmune disease that affects nearly 1% people worldwide and is characterized by joint inflammation, cartilage and bone damages, associated with chronic joint pain, often resistant to current therapies. Whether at a preclinical stage, where we talk about arthralgia, or at an established stage of the pathology, pain constitutes a real burden for the patients with more than 60% rating their pain management has unsatisfactory. The presence of synovitis is necessary for the diagnosis of established RA, therefore, no real therapeutic strategy is used at a preclinical stage. In addition, at an established stage, the current strategy aimed primarily at reducing the activity of the pathology without an actual management of the pain as such. Among the actors of synovitis in RA, Nerve Growth Factor plays a critical role in the establishment and maintenance of painful symptoms. Anti-NGF are known as promising analgesic drugs. Nevertheless, due to pleiotropic effects of NGF, targeting this neurotrophin leads to significant adverse effects. In the first part of this work, we sought to better characterize the specific involvement of intracellular signaling pathways of the high affinity tyrosine kinase A (TrkA) receptor of NGF in a context of inflammatory joint pain (arthritis), but also of somatic and visceral pain. Since a total knockout of TrkA receptor in mice is not viable, we performed a multimodal study in TrkA/C knock-in mice, expressing a chimeric receptor composed of the native extracellular part of TrkA receptor and, the transmembrane and intracellular functional parts of the neurotrophin 3 receptor: TrkC receptor, which is not really involved in inflammatory pain. Thus, NGF can bind normally to the TrkA/C receptor but activates the intracellular signaling pathways downstream of TrkC receptor. Our results have shown that a lack of activation of certain TrkA pathways (i.e. c-Jun and p38 MAPK) in the DRGs of TrkA/C mice, has a significant impact on the development of painful symptoms, especially mechanical hypersensitivity in a context of articular, somatic, or visceral pain, without affecting heat thermal hyperalgesia. These effects result, on one hand, from the decrease of CGRP+ nerve sprouting and in another hand, from the transcriptional changes of some neurotransmitters and mechanotransducers including the proton-sensitive ion channel: ASIC3. In addition, our studies highlight a direct link between NGF/TrkA and bone remodeling, in particular, osteoclastic activity, suggesting a beneficial role of the inhibition of some specific TrkA-associated pathways, in both mechanical hypersensitivity and bone erosion found in RA.In a second part of our work, we investigated the mechanisms involved in arthralgia induced by the injection of autoantibodies against citrullinated peptides (ACPA). The majority of RA patients is positive for ACPA that can be produced months to years before RA diagnosis and appear to be directly associated with the development of pain. Arthralgia is one of the first signs of an emerging RA and can persist even following RA treatment. First, we confirmed that monoclonal ACPA IgG1 subtypes differ in their pronociceptive and bone erosive properties certainly link to their reactivity patterns against citrullinated epitopes on different targets especially those engaging osteoclast activity. Thus, the combination of B02/B09 ACPA clones induced pain like behaviour without any inflammation, but is associated with an alteration of bone homeostasis in injected mice. We suggest that as a result of ACPA-induced osteoclast activation, certain factors (e.g. protons and/or lipids) are released, which sensitize ASIC3, ultimately leading to pain.
6

Rôles et régulations des canaux ioniques ASIC3 dans la douleur

Delaunay, Anne 30 October 2013 (has links) (PDF)
Les douleurs chroniques, d'origine inflammatoire, neuropathique ou incisionnelle, affectent environ 20 % de la population adulte et jusqu'à 50 % de la population âgée. Elles représentent ainsi un véritable enjeu de santé publique. Malgré l'existence de grandes familles d'analgésiques, les traitements restent souvent inefficaces. Cela est dû en grande partie à un manque de connaissances des mécanismes physiopathologiques de la douleur. Durant ma thèse, je me suis intéressée aux rôles et aux régulations de senseurs moléculaires de la douleur récemment mis en évidence: les canaux ioniques ASIC (" Acid Sensing Ion Channels "). Les ASIC forment une famille de canaux cationiques, excitateurs. Les canaux ASIC3, en particulier, sont présents dans les neurones sensoriels qui innervent la peau, les muscles, les viscères et les articulations. Ils sont activés par de faibles acidifications extracellulaires qui se produisent au cours de nombreux mécanismes physiopathologiques comme l'inflammation, l'ischémie, le développement tumoral, ou encore les lésions tissulaires consécutives, par exemple, à une chirurgie. Dans une première étude, nous avons montré que les canaux ASIC3 jouent un rôle primordial dans le développement des douleurs post-opératoires, notamment dans les douleurs posturales, proches des cas cliniques. A partir d'un modèle d'incision plantaire chez le rat, nous avons mis en évidence une surexpression des canaux ASIC3 dans les neurones sensoriels qui innervent la patte opérée. L'inhibition pharmacologique (toxine) et génique (siARN) d'ASIC3 in vivo réduit le comportement douloureux. Notre seconde étude a porté sur le canal ASIC3 humain, peu étudié jusqu'ici. J'ai démontré que ce canal possède une propriété originale et inductible qui lui confère une sensibilité, non seulement à l'acidification, mais également à l'alcalinisation extracellulaire. Cette sensibilité alcaline est une caractéristique intrinsèque du canal. Elle implique deux résidus arginine spécifiques à la protéine humaine et présents sur sa boucle extracellulaire. Le canal ASIC3 humain, en adaptant son activité à différents environnements de pH, pourrait ainsi participer à la régulation fine du potentiel de membrane et à la sensibilisation neuronale. Plus récemment, j'ai étudié la régulation du canal ASIC3 par des lipides inflammatoires et ses conséquences sur la douleur. De manière très intéressante, je démontre que la lysophosphatidylcholine (LPC), un lipide issu de la dégradation membranaire lors de processus inflammatoires, est un nouvel activateur du canal ASIC3 en conditions normales de pH. De plus, en synergie avec une acidose modérée (pH 7,0), la LPC et son analogue non métabolisable produisent une douleur spontanée chez les rats, qui est réduite en présence de toxine inhibitrice d'ASIC3.
7

T-Mobile MDA II v Linuxu / T-Mobile MDA II in Linux

Michl, Zbyněk January 2009 (has links)
MSc. thesis deals with mobile digital assistant T-Mobile MDA II running Linux operating system. The first part presents device identification and parameters' specification of the MDA II. The second part focuses on selection of GNU distribution with Linux bootloader and Linux kernel support comparison. The subject of the last part is MDA II component code implementation and its merging into Linux kernel.

Page generated in 0.0429 seconds