• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 92
  • 63
  • 25
  • 21
  • 15
  • 10
  • 6
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 297
  • 49
  • 33
  • 31
  • 29
  • 27
  • 24
  • 23
  • 23
  • 22
  • 22
  • 22
  • 22
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

DNA-PK, ATM and ATR Collaboratively Regulate p53-RPA Interaction to Facilitate Homologous Recombination DNA Repair

Serrano, M. A., Li, Z., Dangeti, M., Musich, P. R., Patrick, S., Roginskaya, Marina, Cartwright, B., Zou, Y. 09 May 2013 (has links)
Homologous recombination (HR) and nonhomologous end joining (NHEJ) are two distinct DNA double-stranded break (DSB) repair pathways. Here, we report that DNA-dependent protein kinase (DNA-PK), the core component of NHEJ, partnering with DNA-damage checkpoint kinases ataxia telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR), regulates HR repair of DSBs. The regulation was accomplished through modulation of the p53 and replication protein A (RPA) interaction. We show that upon DNA damage, p53 and RPA were freed from a p53-RPA complex by simultaneous phosphorylations of RPA at the N-terminus of RPA32 subunit by DNA-PK and of p53 at Ser37 and Ser46 in a Chk1/Chk2-independent manner by ATR and ATM, respectively. Neither the phosphorylation of RPA nor of p53 alone could dissociate p53 and RPA. Furthermore, disruption of the release significantly compromised HR repair of DSBs. Our results reveal a mechanism for the crosstalk between HR repair and NHEJ through the co-regulation of p53-RPA interaction by DNA-PK, ATM and ATR.
202

DNA-PK, ATM and ATR Collaboratively Regulate p53-RPA Interaction to Facilitate Homologous Recombination DNA Repair

Serrano, M. A., Li, Z., Dangeti, M., Musich, P. R., Patrick, S., Roginskaya, Marina, Cartwright, B., Zou, Y. 09 May 2013 (has links)
Homologous recombination (HR) and nonhomologous end joining (NHEJ) are two distinct DNA double-stranded break (DSB) repair pathways. Here, we report that DNA-dependent protein kinase (DNA-PK), the core component of NHEJ, partnering with DNA-damage checkpoint kinases ataxia telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR), regulates HR repair of DSBs. The regulation was accomplished through modulation of the p53 and replication protein A (RPA) interaction. We show that upon DNA damage, p53 and RPA were freed from a p53-RPA complex by simultaneous phosphorylations of RPA at the N-terminus of RPA32 subunit by DNA-PK and of p53 at Ser37 and Ser46 in a Chk1/Chk2-independent manner by ATR and ATM, respectively. Neither the phosphorylation of RPA nor of p53 alone could dissociate p53 and RPA. Furthermore, disruption of the release significantly compromised HR repair of DSBs. Our results reveal a mechanism for the crosstalk between HR repair and NHEJ through the co-regulation of p53-RPA interaction by DNA-PK, ATM and ATR.
203

DNA Damage Responses in Progeroid Syndromes Arise From Defective Maturation of Prelamin A

Liu, Yiyong, Rusinol, Antonio, Sinensky, Michael, Wang, Youjie, Zou, Yue 15 November 2006 (has links)
The genetic diseases Hutchinson-Gilford progeria syndrome (HGPS) and restrictive dermopathy (RD) arise from accumulation of farnesylated prelamin A because of defects in the lamin A maturation pathway. Both of these diseases exhibit symptoms that can be viewed as accelerated aging. The mechanism by which accumulation of farnesylated prelamin A leads to these accelerated aging phenotypes is not understood. Here we present evidence that in HGPS and RD fibroblasts, DNA damage checkpoints are persistently activated because of the compromise in genomic integrity. Inactivation of checkpoint kinases Ataxia-telangiectasia-mutated (ATM) and ATR (ATM- and Rad3-related) in these patient cells can partially overcome their early replication arrest. Treatment of patient cells with a protein farnesyltransferase inhibitor (FTI) did not result in reduction of DNA double-strand breaks and damage checkpoint signaling, although the treatment significantly reversed the aberrant shape of their nuclei. This suggests that DNA damage accumulation and aberrant nuclear morphology are independent phenotypes arising from prelamin A accumulation in these progeroid syndromes. Since DNA damage accumulation is an important contributor to the symptoms of HGPS, our results call into question the possibility of treatment of HGPS with FTIs alone.
204

Deficiency of Ataxia-Telangiectasia Mutated Kinase Modulates Functional and Biochemical Parameters of the Heart in Response to Western-Type Diet

Wingard, Mary C., Dalal, Suman, Shook, Paige L., Myers, Rachel, Connelly, Barbara A., Thewke, Douglas P., Singh, Mahipal, Singh, Krishna 01 June 2021 (has links)
Ataxia-telangiectasia mutated (ATM) kinase deficiency exacerbates heart dysfunction late after myocardial infarction. Here, we hypothesized that ATM deficiency modulates Western-type diet (WD)-induced cardiac remodeling with an emphasis on functional and biochemical parameters of the heart. Weight gain was assessed in male wild-type (WT) and ATM heterozygous knockout (hKO) mice on weekly basis, whereas cardiac functional and biochemical parameters were measured 14 wk post-WD. hKO-WD mice exhibited rapid body weight gain at weeks 5, 6, 7, 8, and 10 versus WT-WD. WD decreased percent fractional shortening and ejection fraction, and increased end-systolic volumes and diameters to a similar extent in both genotypes. However, WD decreased stroke volume, cardiac output, peak velocity of early ventricular filling, and aortic ejection time and increased isovolumetric relaxation time (IVRT) and Tei index versus WT-NC (normal chow). Conversely, IVRT, isovolumetric contraction time, and Tei index were lower in hKO-WD versus hKO-NC and WT-WD. Myocyte apoptosis and hypertrophy were higher in hKO-WD versus WT-WD. WD increased fibrosis and expression of collagen-1a1, matrix metalloproteinase (MMP)-2, and MMP-9 in WT. WD enhanced AMPK activation, while decreasing mTOR activation in hKO. Akt and IKK-a/b activation, and Bax, PARP-1, and Glut-4 expression were higher in WT-WD versus WT-NC, whereas NF-κB activation and Glut-4 expression were lower in hKO-WD versus hKO-NC. Circulating concentrations of IL-12(p70), eotaxin, IFN-c, macrophage inflammatory protein (MIP)-1a, and MIP-1b were higher in hKO-WD versus WT-WD. Thus, ATM deficiency accelerates weight gain, induces systolic dysfunction with increased preload, and associates with increased apoptosis, hypertrophy, and inflammation in response to WD.
205

What are the effects of a cashless society on VAT evasion? : A study on Denmark, Finland & Sweden

Alieva, Zarema, Ramare, Jennifer January 2020 (has links)
The title of this essay is "What are the effects of a cashless society on VAT evasion –A study on Denmark, Finland & Sweden". Due to an increasingly digitalized world there will be different effects on the economy. We are getting closer to a cashless society every day, but we do not know the consequences that this will have. VAT evasion has long been a problem and has been easy to go through with, due to all the payments made with cash. It would be interesting to see if there is going to be a change in VAT evasion now as we go towards a cashless society. The aim of the study was therefore to answer the question: what are the effects of a cashless society on VAT evasion. To answer this question we focused on collecting data from three Scandinavian countries: Denmark, Finland and Sweden. Many articles were read on the subject before interesting data was collected to be analyzed. The data, mostly gathered from the European Central Bank, included the VATgap, number of payment terminals, number of ATMs, percentage of total payments made with cards, GDP and the Consumer Price Index for each of the three chosen countries. In the theoretical framework the theory around VAT is presented as well as a short discussion about the underlying factors on VAT evasion. There is also a section on how we have chosen to represent the cashless society and how this will be measured in the paper. In order with previous research the hypothesis of the study was formed to be that the VAT gap will decrease as we gotowards a cashless society. Multiple regressions were made on the data collected and the result analyzed. There was no significant relationship found between the VAT gap and any of the three explanatory variables. Instead the VAT gap seemed to be connected to what country that was studied. The coefficients of the variables seemed to indicate that there might be a positive relationship between the VAT gap divided by GDP and the number of payment terminals. The reason for this relationship was discussed to possibly be blamed on the fact that card usage increases the total transactions due to the speed and simplicity of card payments. In order to make the results more reliable it was suggested that the study would be enlarged to include more countries and specifically countries that are less digitalized and perceived to be more corrupt.
206

線虫 Caenorhabditis elegans を用いたストレス応答機構に関する研究

森脇, 隆仁 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18110号 / 理博第3988号 / 新制||理||1575(附属図書館) / 30968 / 京都大学大学院理学研究科生物科学専攻 / (主査)准教授 秋山 秋梅, 教授 沼田 英治, 教授 疋田 努 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
207

Quality-of-Service Control Scheme for Wireless Local Area Networks / 無線ローカルエリアネットワークにおける通信品質制御方式の研究

Nuno, Fusao 24 September 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第18623号 / 情博第547号 / 新制||情||97(附属図書館) / 31523 / 京都大学大学院情報学研究科通信情報システム専攻 / (主査)教授 守倉 正博, 教授 高橋 達郎, 教授 梅野 健 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
208

Insufficiency of DNA Repair Enzyme ATM Promotes Naive CD4 T-cell Loss in Chronic Hepatitis C Virus Infection

Zhao, Juan, Dang, Xindi, Zhang, Peixin, Nguyen, Lam Nhat, Cao, Dechao, Wang, Lin, Wu, Xiaoyuan, Morrison, Zheng D., Zhang, Ying, Jia, Zhansheng, Xie, Qian, Wang, Ling, Ning, Shunbin, El Gazzar, Mohamed, Moorman, Jonathan P., Yao, Zhi Q. 10 April 2018 (has links) (PDF)
T cells have a crucial role in viral clearance and vaccine response; however, the mechanisms regulating their responses to viral infections or vaccinations remain elusive. In this study, we investigated T-cell homeostasis, apoptosis, DNA damage, and repair machineries in a large cohort of subjects with hepatitis C virus (HCV) infection. We found that naive CD4 T cells in chronically HCV-infected individuals (HCV T cells) were significantly reduced compared with age-matched healthy subjects. In addition, HCV T cells were prone to apoptosis and DNA damage, as evidenced by increased 8-oxoguanine expression and γH2AX/53BP1-formed DNA damage foci—hallmarks of DNA damage responses. Mechanistically, the activation of DNA repair enzyme ataxia telangiectasia mutated (ATM) was dampened in HCV T cells. ATM activation was also diminished in healthy T cells exposed to ATM inhibitor or to HCV (core protein) that inhibits the phosphoinositide 3 kinase pathway, mimicking the biological effects in HCV T cells. Importantly, ectopic expression of ATM was sufficient to repair the DNA damage, survival deficit, and cell dysfunctions in HCV T cells. Our results demonstrate that insufficient DNA repair enzyme ATM leads to increased DNA damage and renders HCV T cells prone to apoptotic death, which contribute to the loss of naive T cells in HCV infection. Our study reveals a novel mechanism for T-cell dysregulation and viral persistence, providing a new strategy to improve immunotherapy and vaccine responses against human viral diseases.
209

Role of ATM in T Cell Dysfunction During Chronic Viral Infections

Zhao, Juan 01 May 2019 (has links) (PDF)
Hepatitis C virus (HCV) or human immunodeficiency virus (HIV) infection leads to a phenomenon of inflammaging, in which chronic infection or inflammation induces an immune aged phenotype with T cell dysfunction. Thus, HCV or HIV infection has been deemed as a model to study the mechanisms of T cell infammaging and viral persistence in humans. In this dissertation, T cell homeostasis, DNA damage and repair machineries were investigated in patients with chronic HCV or HIV infection at risk for inflammaging. We found a significant depletion in CD4 T cells, which was correlated with their apoptosis in chronically HCV/HIVinfected patients, compared to age-matched healthy subjects. In addition, virus-infected patients’ CD4 T cells were prone to DNA damage that extended to chromosome ends (telomeres), leading to accelerated telomere erosion - a hallmark of senescence. Mechanistically, the DNA doublestrand break (DSB) sensor MRE11, RAD50, and NBS1 (MRN) remained intact, but the DNA damage checkpoint kinase ataxia telangiectasia mutated (ATM) and its downstream checkpoint kinase 2 (CHK2) were significantly suppressed in T cells from HCV/HIV-infected individuals. Consistently, ATM/CHK2 activation, DNA repair, and cellular functions were also impaired in primary CD4 T cells following ATM knockdown, or exposure to the ATM inhibitor (KU60019), as well as in CD4 T cells co-cultured with HCV-infected hepatocytes, or a T cell line infected with HIV-1 in the presence of raltegravir in vitro, which recapitulates the biological effects observed in T cells in the setting of HCV/HIV infection in vivo. Importantly, ectopic expression of ATM was essential and sufficient to reduce the DNA damage, survival deficit, and cellular dysfunction in T cells from both HCV and HIV-infected individuals. These results demonstrate that failure of DSB repair due to ATM deficiency leads to unrepaired DNA damage and renders virally infected patients’ T cells prone to senescence and apoptosis, thus contributing to CD4 T cell loss or dysfunction during chronic HCV or HIV infection. This study reveals a novel mechanism by which ATM deficiency promotes telomeric DNA damage and premature T cell aging, and provides a new therapeutic target for inflammaging-induced immune dysfunction during chronic viral infection.
210

Telomeric DNA Damage and Repair Machineries in HIV Infection

Nguyen, Lam 01 May 2019 (has links) (PDF)
In this thesis, we investigated T cell homeostasis and DNA damage repair machineries in HIV infection. We found that the frequencies of CD4T cells were low, which is associated with cell apoptosis in HIV patients compared to healthy subjects. Importantly, these events were closely correlated to the increase in T cell exhaustion, senescence, DNA damage, and telomere attrition. Mechanistically, while the DNA damage sensors Mer11, Rad50, and NBS1 (MRN) complexes remained intact, the ataxia-telangiectasia mutated (ATM) kinase and its downstream checkpoint kinase 2 (CHK2) were significantly inhibited during HIV infection. Additionally, telomeric repeat-binding factor 2 (TRF2) that functions to protect telomeres from unwanted DNA damage was also suppressed by HIV infection. These findings revealed an important mechanism by which telomeres undergo DNA damage that remained unrepaired due to ATM deficiency and TRF2 deprotection - a process that could promote T cell apoptosis, senescence, and cellular dysfunction in HIV infection.

Page generated in 0.0527 seconds