251 |
Evaluating the Weather Research and Forecasting Model Fidelity for Forecasting Lake BreezesBruno, Jack H. January 2019 (has links)
No description available.
|
252 |
Exposure of Basaltic Materials to Venus Surface Conditions using the Glenn Extreme Environment Rig (GEER)Radoman-Shaw, Brandon G. 23 May 2019 (has links)
No description available.
|
253 |
Isotopic source apportionment of atmospheric toxic metals in urban and industrial settings using biomonitorsKousehlar, Masoomeh 15 April 2021 (has links)
No description available.
|
254 |
The Development and Application of the Hi-Resolution VOC Atmospheric Chemistry in Canopies ModelKenny, William T. January 2015 (has links)
No description available.
|
255 |
Determination of Atmospheric Particulate Matter Composition in the Dayton Metro AreaPatel, Saagar Mahendra 10 June 2016 (has links)
No description available.
|
256 |
Kinetics and Thermochemistry of Halogen and Nitrogen CompoundsRawling, George 12 1900 (has links)
Halogen and nitrogen containing compounds play a key role in the atmospheric chemistry of the Earth. Through a mixed computational and experimental approach, the kinetics of these compounds with radicals common to the atmosphere have been explored. Using fundamental measurements such as the IR absorption cross-section, the rate constants of atmospheric reactions and the properties of product molecules have been derived. These results have been further extended to environmental applications such as the Global Warming Potential for a species. The present results can be used as a calibration for further experiments and as checks on computational predictions of environmental properties. Such modeling can aid in the development of future industrial reagents that are less hazardous to the atmosphere.
|
257 |
Understanding the chemical impacts of biogenic volatile organic compounds and the physical drivers of their observed seasonalityMcGlynn, Deborah Fairbanks 02 June 2022 (has links)
Emissions from natural ecosystems, broadly classified as biogenic volatile organic compounds (BVOCs), contribute 90\% to the VOC budget. Individual BVOCs vary widely in their reaction rates with atmospheric oxidants, making their atmospheric impact highly dependent on VOC composition. Their emissions are also dependent on vegetative make up and a number of meteorological and ecological variables. However, the ecological and physical drivers of their emissions is becoming more variable in a changing climate, leading to greater uncertainties in models. Increasing the monitoring of individual compounds can improve our understanding of the drivers of these emissions and the impact of individual chemical species on atmospheric composition. Improved understanding of BVOC composition can better emission models and, SOA and ozone formation predictions. To study the atmospheric impacts and physical drivers of BVOCs, a GC-FID was adapted for automated hourly sampling and analysis. The details of the hardware and software used for the system are described in detail to enable future long-term BVOC measurements in additional locations. The instrument was deployed at a measurement tower in a forest in central Virginia for year-round collection of BVOC concentrations. Using two years of collected hourly data, this work assesses the chemical impacts of individual BVOCs on time scales ranging from hour to year. This work identifies the importance of both concentration and chemical structure in determining atmospheric impacts. Additionally, seasonality in the concentration of some biogenic species has large implications for atmospheric reactivity in the warmest months of the year, particularly ozone reactivity. Using ecological and meteorological data collected at the site in conjunction with the BVOC data, the drivers of BVOC concentrations and their seasonality are identified. Comparison between this data and current models, reveal important deviations which may lead to large modeled uncertainties. Furthermore, the collected data has been made publicly available to aid in future research regarding BVOCs. / Doctor of Philosophy / The earth hosts a number of sources of atmospheric emissions. These range from human-driven sources such as vehicles and factories, to natural sources such as trees and grass. The content of these emissions, amongst others, become a part of a large reactor (the atmosphere), that interact with each other. The interaction of these emissions with atmospheric oxidants forms a gas (ozone) with implications for human and ecosystem health, and secondary organic aerosol (the leading component to smog). However, the extent to which these emissions react with atmospheric oxidants is largely dependent on the structure of individual compounds. A major focus of this dissertation is to show that compounds with reactive structures can have a large impact on atmospheric composition, and that the quantity of emissions can be as important as compound structure.
Understanding the impact of individual compounds in the atmosphere requires improved measurement techniques, capable of detecting the compounds of interest over long time periods. Therefore, another focus of this work was the adaptation and deployment of an instrument capable of detecting some of the most reactive species in the atmosphere, volatile organic compounds emitted from forests. The instrument deployed in this work was a gas chromatography flame ionization detector (GC-FID), which detects compounds largely composed of carbon and hydrogen. The instrument was adapted to run automatically through the development of an electronics box and software program interfaced with the GC-FID. Following development, the instrument was deployed to a remote forest research site for two years. The data collected from this work was used to determine the impact of individual compounds on atmospheric composition. Findings from this work could be used to improve a range of atmospheric models. Small changes in emissions (human or plant) contribute to the total VOC budget which can have large implications for the formation of ozone and SOA. Therefore, increased understanding of the BVOC concentrations and emission driver will aid in predicting these atmospheric components.
|
258 |
Terrestrial ecosystem impacts on air qualityWong, Yik Hong 16 July 2024 (has links)
The terrestrial ecosystem is an integral component of the Earth System. Constant atmosphere-biosphere exchanges of energy and material affect both the physics and chemistry of the atmosphere. While the general roles of terrestrial ecosystems in regulating ozone and particulate matter air pollution have long been acknowledged, our understanding at both individual process and system level are far from perfect. Also, new process-level discoveries about terrestrial atmosphere-biosphere exchanges are not timely incorporated in numerical models routinely used to study and forecast air quality. These hinder our ability to understand how air quality respond to environmental changes and variabilities. Chapter 1 of this dissertation provides a brief overview on these topics.
In Chapter 2 of this dissertation (Wong et al., 2019), we conduct global long-term simulations of ozone dry deposition velocity with four different types of dry deposition parameterizations. We find that none of the tested parameterizations universally stands out in terms of matching observed ozone deposition velocity over different land cover types. Combining this with sensitivity simulations from a global 3-D atmospheric chemistry model (GEOS-Chem), we find that the choice of dry deposition parameterizations can affect the mean, trend and variability of simulated surface O3 level.
In Chapter 3 of this dissertation (Wong et al., 2022), we analyze long-term ozone flux observation from three field sites to examine the effects of extreme heat and dryness on ozone deposition. We find that non-stomatal ozone uptake tends to increase during hot days, which either partially offsets or dominates over the reduction in stomatal ozone uptake anticipated by ecophysiological theory. While the response of ozone deposition to dryness is more varied, changes in non-stomatal deposition are usually important. Current dry deposition parameterizations often fail to capture such changes in non-stomatal ozone uptake, resulting in considerable potential error in simulated surface ozone level during hot and dry days.
In Chapter 4 of this dissertation (Wong and Geddes, 2021), we conduct global GEOS-Chem numerical experiments with anthropogenic emission inventories and land surface remote sensing products to compare the effects land cover versus land management changes on O3 and fine particulate matter air quality over 1992 – 2014. We find that land cover has stronger effects on O3, while land management has stronger effects on fine particulate matter pollution. We also find that land management has significantly altered regional and global nitrogen deposition, and therefore the risk of critical load exceedance.
Chapter 5 of this dissertation includes the concluding remarks and suggestions for future work. In addition, I outline and present the preliminary result from a project examining the future of soil reactive nitrogen emissions and their impacts on air quality.
|
259 |
Observing and Modeling Spatiotemporal Variations in Summertime U.S. Air Pollution and PhotochemistryTao, Madankui January 2024 (has links)
Exposure to ground-level ozone (O₃), which forms secondarily in the atmosphere, intensifies the risk of respiratory and cardiovascular diseases. Effective mitigation strategies require understanding the spatiotemporal variability of O₃ precursors, including nitrogen oxides (NOx) and volatile organic compounds (VOCs), as well as O₃ formation photochemistry. This thesis examines the concentrations of trace gases closely related to O₃ production, specifically nitrogen dioxide (NO₂, the dominant component of NOx) and formaldehyde (HCHO, a proxy for VOC reactivity), as well as photochemical conditions. I investigate how these factors differ on high-O₃ days, change diurnally, and respond to the temporal resolution of anthropogenic emissions. The focus is on the summer of 2018 due to the availability of trace gas retrievals from the TROPOspheric Monitoring Instrument (TROPOMI) and in situ measurements from field campaigns.
I first investigate New York City (NYC) and the Baltimore/Washington D.C. area, where high O₃ levels frequently occur in summer. On high-O₃ days (when the maximum daily 8-hour average (MDA8) O₃ exceeds 70 ppb), tropospheric vertical column densities (VCDTrop) of HCHO and NO₂ increase in urban centers. The HCHO/NO2 VCDTrop ratio, proposed as an indicator of local surface O₃ production sensitivity to its precursors, generally rises due to a more pronounced increase in HCHO VCDTrop. This suggests a shift toward a more NOx-sensitive O₃ production regime that could enhance the effectiveness of NOx controls on the highest O₃ days. As retrievals of tropospheric trace gases from Low Earth Orbit (LEO) satellites like TROPOMI are limited to one overpass per day (early afternoon), I then analyze spatial variability in HCHO and NO₂ concentration diurnal patterns and connect changes in column densities with surface concentrations. Diurnal HCHO patterns indicate the impact of temperature-dependent VOC emissions, while a bimodal surface NO₂ pattern reflects diurnal patterns of local anthropogenic NOx emissions and boundary layer dynamics. Column concentration peaks generally occur about four hours after surface concentration peaks (morning for NO2 and midday for HCHO), highlighting the challenge of relating column densities to health-related surface concentrations.
I also explore how the temporal resolution of anthropogenic emissions influences air pollution levels and diurnal variations. Surface NOx and O3 concentrations show different spatial patterns of change when switching from daily mean to hourly varying nitric oxide emissions. In urban areas of both the western and eastern CONUS, adding hourly NO emissions increases daytime emissions, leading to O₃ decreases, indicating NOx-saturated O₃ chemistry. In the western CONUS, monthly mean surface NO₂ increases, while in the eastern CONUS, characterized by shorter NO₂ lifetimes, NO₂ decreases. These sensitivities highlight the importance of accounting for diurnal changes when inferring emissions from concentrations.
This thesis advances our understanding of O₃-NOx-VOC air pollution by exploring variations in both surface and column conditions across urban-rural gradients. It integrates in situ measurements, space-based observations, and modeling techniques and assesses advanced modeling tools for future applications. These findings support the future applications of geostationary satellite retrievals for continuous trace gas observation throughout daylight hours, supplementing the once-a-day LEO satellite data used in this thesis, with implications such as aiding source attribution and targeting cost-effective control measures for O₃ mitigation.
|
260 |
The measurement of radical species of atmospheric importanceBell, Claire L. January 2010 (has links)
The measurement of radical species in the atmosphere has far reaching implications. For example, it is necessary to both understand and improve our knowledge of radicals in the atmosphere to better inform the models which in many cases are the best way of predicting future air quality and climate change. Although many of these models are often not fully representative of all the processes occurring, they are the current best estimate based on the knowledge available, and can be useful in informing and directing future policy. The numerous, varied and interlinked cycles in the atmosphere are complex and only by obtaining data on specific species can accurate concentrations be retrieved and fed back into the models to improve their accuracy. This work is concerned with the development and application of an ultrasensitive absorption spectroscopy technique to the problem of detection of the peroxy radical, HO₂. Noise Immune Cavity Enhanced Optical Heterodyne Molecular Spectroscopy (NICE-OHMS) combines cavity enhancement techniques (in order to increase the path length) with frequency and wavelength modulation techniques (in order to reduce the noise). Following a discussion of the current detection methods used by atmospheric scientists to accurately measure and quantitative concentrations, some preliminary work on the detection of ammonia by a simple cavity enhanced absorption setup is presented. Pressure broadening and shift results were obtained for a number of ammonia transitions in the near infrared region, broadened by He, Ne, Ar, Xe, O₂ and N₂. The bulk of the work concentrates on the implementation of the NICE-OHMS technique, presenting the first results with the use of an external cavity diode laser and a ring shaped cavity. A sensitivity of 4 x 10⁻¹¹ cm⁻¹ Hz⁻<sup>1/2</sup> is obtained on an individual rovibrational transition of methane at 6610.063 cm⁻¹, along with a selection of other data from the atmospherically important molecules methane, nitrogen dioxide and carbon dioxide, highlighting the broad wavelength range over which the instrument can operate. Finally, the NICE-OHMS technique is used to probe HO₂ radicals formed through the photolysis of a Cl₂/CH₃OH/O₂ mixture. Following the creation and detection of HO₂ radicals in the cavity, and based on the optimum sensitivity outlined above, a minimum concentration of 1 x 10⁹ molecules cm⁻³ has been demonstrated.
|
Page generated in 0.0422 seconds