• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 2
  • Tagged with
  • 9
  • 9
  • 9
  • 9
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pharmacogenomics of Sulfonylureas and Glinides on ATP-Sensitive Potassium Channel

Lang, Yiqiao Veronica Unknown Date
No description available.
2

Syntaxin-1A Inhibits Cardiac ATP-Sensitive Potassium Channels by Direct Interaction with Distinct Domains within Sulphonylurea Receptor 2A Nucleotide-Binding Folds

Chao, Christin Chih Ting 13 January 2010 (has links)
KATP channels couple cell metabolic status to the membrane excitability by sensing the cytoplasmic ATP/ADP ratio. Present studies examined how conserved motifs (Walker A (WA), signature sequence (L), and Walker B (WB)) within each NBF of SUR2A bind to Syn-1A to affect its actions on cardiac KATP channels. In vitro binding experiments illustrated that Syn-1A binds cardiac SUR2A at WA and L of NBF-1 and WA, L, and WB of NBF-2. Electrophysiology experiments on stably expressing SUR2A/Kir6.2 cell-lines showed that only L and WB of NBF-1 and all three NBF-2 motifs could abrogate the inhibitory effect of Syn-1A on SUR2A/KATP channels. These results lead me to hypothesize that more independent motif in NBF-2 can bind and abrogate Syn-1A’s inhibition than NBF-1 on SUR2A/KATP channels. A corollary postulate is that Syn-1A acts as a scaffold to secure the NBF-1 and -2 in dimer conformation required for SUR2A to modulate Kir6.2 gating.
3

Syntaxin-1A Inhibits Cardiac ATP-Sensitive Potassium Channels by Direct Interaction with Distinct Domains within Sulphonylurea Receptor 2A Nucleotide-Binding Folds

Chao, Christin Chih Ting 13 January 2010 (has links)
KATP channels couple cell metabolic status to the membrane excitability by sensing the cytoplasmic ATP/ADP ratio. Present studies examined how conserved motifs (Walker A (WA), signature sequence (L), and Walker B (WB)) within each NBF of SUR2A bind to Syn-1A to affect its actions on cardiac KATP channels. In vitro binding experiments illustrated that Syn-1A binds cardiac SUR2A at WA and L of NBF-1 and WA, L, and WB of NBF-2. Electrophysiology experiments on stably expressing SUR2A/Kir6.2 cell-lines showed that only L and WB of NBF-1 and all three NBF-2 motifs could abrogate the inhibitory effect of Syn-1A on SUR2A/KATP channels. These results lead me to hypothesize that more independent motif in NBF-2 can bind and abrogate Syn-1A’s inhibition than NBF-1 on SUR2A/KATP channels. A corollary postulate is that Syn-1A acts as a scaffold to secure the NBF-1 and -2 in dimer conformation required for SUR2A to modulate Kir6.2 gating.
4

Regulation of ATP-Sensitive Potassium Channels in the Heart

Garg, Vivek 26 June 2009 (has links)
No description available.
5

Ion transport pharmacology in heart disease and type-2 diabetes.

Soliman, Daniel 06 1900 (has links)
The cardiac sodium-calcium exchanger (NCX) is an important membrane protein which regulates cellular calcium necessary for the optimal contractile function of the heart. NCX has become a focal point in ischemic heart disease (IHD) research as evidence suggests that reactive oxygen species (ROS) produced during IHD can cause NCX to malfunction resulting in an intracellular calcium overload leading to cardiac contractile abnormalities. Therefore, I hypothesized that NCX function is mediated by ROS increasing NCX1 activity during cardiac ischemia-reperfusion. To research this hypothesis, I investigated cellular mechanisms which may play a role in NCX dysfunction and also examined methods to correct NCX function. I found that reactive oxygen species directly and irreversibly modify NCX protein, increasing its activity, thereby worsening the calcium overload which is deleterious to cardiac function. I also elucidated the molecular means by which NCX protein modification occurs. Exploring pharmacological means by which to decrease NCX function to relieve the calcium overload and reduce the damage to the heart, I discovered that ranolazine (Ranexa), indicated for the treatment of angina pectoris inhibits NCX activity directly, thereby further reducing the calcium overload-induced injury to the heart. Furthermore, many IHD patients are also co-morbid for type-2 diabetes. These patients are prescribed sulfonylurea (SU) agents which act at the ATP sensitive K+ channel (KATP). One agent such as glibenclamide is known to have cardiotoxic side effects. Therefore, SUs devoid of any cardiac side effects would beneficial. Interestingly, patients possessing the genetic variant E23K-S1369A KATP channel have improved blood glucose levels with the use of the SU gliclazide. Therefore, I determined the functional mechanism by which gliclazide has increased inhibition at the KATP channel. These findings have implications for type-2 diabetes therapy, in which 20% of the type-2 diabetic population carries the KATP channel variant. In summary, the findings presented in this thesis have implications on treatment strategies in the clinical setting, as a NCX inhibitor can be beneficial in IHD and possibly type-2 diabetes. Moreover, a pharmacogenomic approach in treating type-2 diabetes may also provide a positive outcome when considering co-morbid cardiac complications such as atrial fibrillation and heart failure.
6

Ion transport pharmacology in heart disease and type-2 diabetes.

Soliman, Daniel Unknown Date
No description available.
7

Propriedades redox de canais de potássio mitocondriais ATP-sensíveis em cérebro de seu efeito neuroprotetor em excitotoxicidade / Redox Properties of Brain Mitochondrial ATP-Sensitive Potassium Channels and Neuroprotective Effects in Excitotoxicity

Maynara Fornazari 29 August 2008 (has links)
Muitos estudos demonstram que a abertura de canais de K+ mitocondriais sensíveis à ATP (mitoKATP) previnem contra danos promovidos por isquemia/reperfusão em coração. Em geral, esta proteção envolve mudanças no estado redox mitocondrial. Em cérebro, sabe-se que agonistas farmacológicos de mitoKATP também protegem em modelo de isquemia/reperfusão. Entretanto, os mecanismos envolvidos na prevenção de danos em cérebro ainda não estão claros. O objetivo principal deste trabalho é compreender os efeitos de canais de K+ mitocondriais ATP-sensíveis em tecido cerebral e os mecanismos pelos quais a sua ativação pode proteger contra danos promovidos por excitotoxicidade, uma das principais conseqüências de um evento isquêmico em cérebro. Neste contexto, demonstramos a proteção pelo mitoKATP em modelo de excitotoxicidade induzida pela ativação direta de receptores NMDA, utilizando cultura de células granulosas de cerebelo. Paralelamente a essa proteção, verificamos que a ativação de mitoKATP reduz a geração de espécies reativas de oxigênio (ROS). Em mitocôndrias isoladas, observamos que ROS geradas pela mitocôndria ativam mitoKATP cerebral, resultando em um aumento da captação de K+ para a matriz, medida através da técnica de inchamento mitocondrial. Em condições de baixa geração de ROS, a adição de H2O2 exógeno ativa o inchamento mitocondrial em resposta à entrada de K+ de modo prevenido por catalase, assim, confirmando que a atividade desses canais é redox-sensível. A ativação de mitoKATP por agonistas farmacológicos, como diazóxido, também é maior na presença de alta geração de ROS, conforme indicado por uma leve diminuição no potencial de membrana mitocondrial. Interessantemente, a adição de um redutor tiólico, 2-mercaptopropionilglicina (MPG) previne a ativação de mitoKATP. A ativação de mitoKATP não alterou a capacidade de captar Ca2+ pela mitocôndria, demonstrando que este não é o mecanismo pelo qual esses canais previnem morte celular excitotóxica. Não foram observados efeitos desses canais em modelo de excitotoxicidade in vivo e em modelo de doença neurodegenerativa, acidose metilmalônica. Juntos, nossos resultados demonstram que mitoKATP cerebrais agem como sensores de ROS mitocondrial, que quando ativados reduzem a liberação de ROS por um leve desacoplamento, prevenindo morte neuronal por excitotoxicidade NMDA-induzida / Several studies have shown that mitochondrial ATP-sensitive K+ channel (mitoKATP) opening prevents ischemia/reperfusion injuries in heart, in a manner involving changes in redox state. In brain, mitoKATP agonists also protect against ischemia/reperfusion. However, the exactly mechanism that mitoKATP protects the brain is still unclear. The purpose of this work is to understand the effects of mitochondrial ATP-sensitive K+ channels in brain and how this channel can protect against excitotoxic cell death, the main consequence of a cerebral ischemia. In this context, we demonstrate that mitoKATP protects against excitotoxicity promoted by NMDA receptor activation in cultured cerebellar granule cells. In paralell, we verified that mitoKATP activation also decreases reactive oxygen species (ROS). In isolated mitochondria, we observed that mitochondrially-generated ROS can activate brain mitoKATP, resulting in enhanced K+ uptake into the matrix, measured as swelling of the organelle. Under conditions in which mitochondrial ROS release is low, exogenous H2O2 activated swelling secondary to K+ entrance, in a manner prevented by catalase, confirming that the activity of this channel is redox-sensitive. Activation of mitoKATP channels by the pharmacological agonist diazoxide was also improved when endogenous mitochondrial ROS release was enhanced, as indicated by mild decreases in mitochondrial membrane potentials. Interessantly, mitoKATP activation was preveted by the thiol reductant 2-mercaptopropionylglycine (MPG). Mitochondrial Ca2+ uptake was not modified by opening mitoKATP, suggesting that this is not the mechanism through which this channel prevents excitotoxic cell death. In an in vivo excitotoxicity model and also neurodegenerative disease model, methylmalonic acidemia, the effects of mitoKATP agonists were not observed. Together, our results demonstrate that brain mitoKATP acts as a mitochondrial ROS sensor, which, when activated, prevents ROS release by mildly uncoupling respiration from oxidative phosphorylation, decreasing excitotoxic cell death
8

Propriedades redox de canais de potássio mitocondriais ATP-sensíveis em cérebro de seu efeito neuroprotetor em excitotoxicidade / Redox Properties of Brain Mitochondrial ATP-Sensitive Potassium Channels and Neuroprotective Effects in Excitotoxicity

Fornazari, Maynara 29 August 2008 (has links)
Muitos estudos demonstram que a abertura de canais de K+ mitocondriais sensíveis à ATP (mitoKATP) previnem contra danos promovidos por isquemia/reperfusão em coração. Em geral, esta proteção envolve mudanças no estado redox mitocondrial. Em cérebro, sabe-se que agonistas farmacológicos de mitoKATP também protegem em modelo de isquemia/reperfusão. Entretanto, os mecanismos envolvidos na prevenção de danos em cérebro ainda não estão claros. O objetivo principal deste trabalho é compreender os efeitos de canais de K+ mitocondriais ATP-sensíveis em tecido cerebral e os mecanismos pelos quais a sua ativação pode proteger contra danos promovidos por excitotoxicidade, uma das principais conseqüências de um evento isquêmico em cérebro. Neste contexto, demonstramos a proteção pelo mitoKATP em modelo de excitotoxicidade induzida pela ativação direta de receptores NMDA, utilizando cultura de células granulosas de cerebelo. Paralelamente a essa proteção, verificamos que a ativação de mitoKATP reduz a geração de espécies reativas de oxigênio (ROS). Em mitocôndrias isoladas, observamos que ROS geradas pela mitocôndria ativam mitoKATP cerebral, resultando em um aumento da captação de K+ para a matriz, medida através da técnica de inchamento mitocondrial. Em condições de baixa geração de ROS, a adição de H2O2 exógeno ativa o inchamento mitocondrial em resposta à entrada de K+ de modo prevenido por catalase, assim, confirmando que a atividade desses canais é redox-sensível. A ativação de mitoKATP por agonistas farmacológicos, como diazóxido, também é maior na presença de alta geração de ROS, conforme indicado por uma leve diminuição no potencial de membrana mitocondrial. Interessantemente, a adição de um redutor tiólico, 2-mercaptopropionilglicina (MPG) previne a ativação de mitoKATP. A ativação de mitoKATP não alterou a capacidade de captar Ca2+ pela mitocôndria, demonstrando que este não é o mecanismo pelo qual esses canais previnem morte celular excitotóxica. Não foram observados efeitos desses canais em modelo de excitotoxicidade in vivo e em modelo de doença neurodegenerativa, acidose metilmalônica. Juntos, nossos resultados demonstram que mitoKATP cerebrais agem como sensores de ROS mitocondrial, que quando ativados reduzem a liberação de ROS por um leve desacoplamento, prevenindo morte neuronal por excitotoxicidade NMDA-induzida / Several studies have shown that mitochondrial ATP-sensitive K+ channel (mitoKATP) opening prevents ischemia/reperfusion injuries in heart, in a manner involving changes in redox state. In brain, mitoKATP agonists also protect against ischemia/reperfusion. However, the exactly mechanism that mitoKATP protects the brain is still unclear. The purpose of this work is to understand the effects of mitochondrial ATP-sensitive K+ channels in brain and how this channel can protect against excitotoxic cell death, the main consequence of a cerebral ischemia. In this context, we demonstrate that mitoKATP protects against excitotoxicity promoted by NMDA receptor activation in cultured cerebellar granule cells. In paralell, we verified that mitoKATP activation also decreases reactive oxygen species (ROS). In isolated mitochondria, we observed that mitochondrially-generated ROS can activate brain mitoKATP, resulting in enhanced K+ uptake into the matrix, measured as swelling of the organelle. Under conditions in which mitochondrial ROS release is low, exogenous H2O2 activated swelling secondary to K+ entrance, in a manner prevented by catalase, confirming that the activity of this channel is redox-sensitive. Activation of mitoKATP channels by the pharmacological agonist diazoxide was also improved when endogenous mitochondrial ROS release was enhanced, as indicated by mild decreases in mitochondrial membrane potentials. Interessantly, mitoKATP activation was preveted by the thiol reductant 2-mercaptopropionylglycine (MPG). Mitochondrial Ca2+ uptake was not modified by opening mitoKATP, suggesting that this is not the mechanism through which this channel prevents excitotoxic cell death. In an in vivo excitotoxicity model and also neurodegenerative disease model, methylmalonic acidemia, the effects of mitoKATP agonists were not observed. Together, our results demonstrate that brain mitoKATP acts as a mitochondrial ROS sensor, which, when activated, prevents ROS release by mildly uncoupling respiration from oxidative phosphorylation, decreasing excitotoxic cell death
9

Efeitos anti-nociceptivo e anti-edematogênico da glibenclamida em um modelo de gota aguda em ratos / Anti-nociceptive and anti-edematogenic effects of glibenclamide in an acute model of gout arthritis in rats

Santos, Rosane Maria Souza dos 23 February 2013 (has links)
Gout is one form of inflammatory arthritis, which is caused by the precipitation of crystals of monosodium urate (MSU) in the joints. Acute gout is associated with sudden and painful inflammatory episodes characterized by high neutrophil infiltration. In spite of years of study gout treatment remains a challenge due to its relative ineficcacy. Thus, search for new and efficient therapies is necessary. The objective of this study was to investigate the involvement of glibenclamide in a model of acute gout in rats induced by MSU. MSU crystals produced nociception and edema when injected into the ankle joint of rats. Treatment with glibenclamide (3 mg/kg, s.c.) or dexamethasone (8 mg/kg, s.c., used as a positive control) decreased spontaneous nociception (67% ± 11 and 70 ± 7% inhibition, respectively) and edema (28 ± 7% and 77 ± 7% inhibition, respectively) induced 6 hours after MSU injection. The number of leukocyte infiltrates in the synovial fluid as well as the release of interleukin 1β (IL-1β) and prostaglandin E2 (PGE2) significantly increased at 6 hours after injection of MSU joint, but these effects were not reversed by treatment with glibenclamide (3 mg/kg, s.c.). In contrast, dexamethasone reduced the leukocyte infiltration and release of IL-1β and PGE2. To confirm if the dose of glibenclamide was able to block the KATP channels, we determined the levels of glucose in the blood of animals. Glibenclamide decreased (23 ± 2%) and dexamethasone increased the blood glucose of the rats compared to vehicle-treated animals / MSU. Therefoe, the effects of glibenclamide on nociception and edema induced MSU, suggests that this sulfonylurea may be an interesting option as an adjunct therapy in pain observed in acute attacks of gout. / A gota é uma forma de artrite inflamatória, causada pela precipitação de cristais de urato monossódico (MSU) nas articulações. A forma aguda de gota está associada a episódios inflamatórios súbitos e dolorosos caracterizados por uma grande infiltração de neutrófilos. Apesar dos anos de estudo sobre a gota, o seu tratamento ainda é um desafio pela relativa ineficácia dos fármacos disponíveis no mercado. Assim, a busca por novos agentes terapêuticos mais efetivos e seguros se faz necessário. Desta forma, o objetivo deste estudo foi investigar o possível potencial farmacológico da glibenclamida em um modelo de gota aguda induzida por MSU em ratos. Os cristais de MSU produziram nocicepção e edema quando injetados na articulação do tornozelo de ratos. O tratamento com glibenclamida (3 mg/kg, s.c.) ou dexametasona (8 mg/kg, s.c., usada como controle positivo) reduziu a nocicepção espontânea (67 ± 11% e 70 ± 7% de inibição, respectivamente) e o edema (28 ± 7% e 77 ± 7% de inibição, respectivamente) induzidos pelo MSU, 6 horas após a injeção do cristal. O número de leucócitos infiltrados no líquido sinovial, assim como a liberação de interleucina 1β (IL-1β) e de prostaglandina E2 (PGE2) foram consideravelmente aumentados, 6 horas após a injeção de MSU na articulação, porém esses efeitos não foram revertidos pelo tratamento com glibenclamida (3 mg/kg, s.c.). Em contrapartida, dexametasona reduziu a infiltração de leucócitos e a liberação de IL-1β e de PGE2. Para confirmar se a dose utilizada de glibenclamida foi capaz de bloquear os canais de KATP, foi avaliado os níveis de glicose no sangue dos animais. A glibenclamida reduziu (23 ± 2%) e a dexametasona aumentou a glicemia dos ratos quando comparado aos animais tratados com veículo /MSU. Assim, frente aos efeitos desempenhados pela glibenclamida sobre a nocicepção e edema induzidos pelo MSU, sugere-se que esta sulfonilureia possa ser uma opção interessante como um tratamento adjuvante na dor observada em ataques agudos de gota.

Page generated in 0.0617 seconds