• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 8
  • 6
  • 1
  • 1
  • 1
  • Tagged with
  • 55
  • 25
  • 18
  • 12
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Functional timing analysis of VLSI circuits containing complex gates / Análise de timing funcional de circuitos VLSI contendo portas complexas

Guntzel, Jose Luis Almada January 2000 (has links)
Os recentes avanços experimentados pela tecnologia CMOS tem permitido a fabricação de transistores em dimensões submicrônicas, possibilitando a integração de dezenas de milhões de dispositivos numa única pastilha de silício, os quais podem ser usados na implementação de sistemas eletrônicos muito complexos. Este grande aumento na complexidade dos projetos fez surgir uma demanda por ferramentas de verificação eficientes e sobretudo que incorporassem modelos físicos e computacionais mais adequados. A verificação de timing objetiva determinar se as restrições temporais impostas ao projeto podem ou não ser satisfeitas quando de sua fabricação. Ela pode ser levada a cabo por meio de simulação ou por análise de timing. Apesar da simulação oferecer estimativas mais precisas, ela apresenta a desvantagem de ser dependente de estímulos. Assim, para se assegurar que a situação crítica é considerada, é necessário simularem-se todas as possibilidades de padrões de entrada. Obviamente, isto não é factível para os projetos atuais, dada a alta complexidade que os mesmos apresentam. Para contornar este problema, os projetistas devem lançar mão da análise de timing. A análise de timing é uma abordagem independente de vetor de entrada que modela cada bloco combinacional do circuito como um grafo acíclico direto, o qual é utilizado para estimar o atraso do circuito. As primeiras ferramentas de análise de timing utilizavam apenas a topologia do circuito para estimar o atraso, sendo assim referenciadas como analisadores de timing topológicos. Entretanto, tal aproximação pode resultar em estimativas demasiadamente pessimistas, uma vez que os caminhos mais longos do grafo podem não ser capazes de propagar transições, i.e., podem ser falsos. A análise de timing funcional, por sua vez, considera não apenas a topologia do circuito, mas também as relações temporais e funcionais entre seus elementos. As ferramentas de análise de timing funcional podem diferir por três aspectos: o conjunto de condições necessárias para se declarar um caminho como sensibilizável (i.e., o chamado critério de sensibilização), o número de caminhos simultaneamente tratados e o método usado para determinar se as condições de sensibilização são solúveis ou não. Atualmente, as duas classes de soluções mais eficientes testam simultaneamente a sensibilização de conjuntos inteiros de caminhos: uma baseia-se em técnicas de geração automática de padrões de teste (ATPG) enquanto que a outra transforma o problema de análise de timing em um problema de solvabilidade (SAT). Apesar da análise de timing ter sido exaustivamente estudada nos últimos quinze anos, alguns tópicos específicos não têm recebido a devida atenção. Um tal tópico é a aplicabilidade dos algoritmos de análise de timing funcional para circuitos contendo portas complexas. Este constitui o objeto básico desta tese de doutorado. Além deste objetivo, e como condição sine qua non para o desenvolvimento do trabalho, é apresentado um estudo sistemático e detalhado sobre análise de timing funcional. / The recent advances in CMOS technology have allowed for the fabrication of transistors with submicronic dimensions, making possible the integration of tens of millions devices in a single chip that can be used to build very complex electronic systems. Such increase in complexity of designs has originated a need for more efficient verification tools that could incorporate more appropriate physical and computational models. Timing verification targets at determining whether the timing constraints imposed to the design may be satisfied or not. It can be performed by using circuit simulation or by timing analysis. Although simulation tends to furnish the most accurate estimates, it presents the drawback of being stimuli dependent. Hence, in order to ensure that the critical situation is taken into account, one must exercise all possible input patterns. Obviously, this is not possible to accomplish due to the high complexity of current designs. To circumvent this problem, designers must rely on timing analysis. Timing analysis is an input-independent verification approach that models each combinational block of a circuit as a direct acyclic graph, which is used to estimate the critical delay. First timing analysis tools used only the circuit topology information to estimate circuit delay, thus being referred to as topological timing analyzers. However, such method may result in too pessimistic delay estimates, since the longest paths in the graph may not be able to propagate a transition, that is, may be false. Functional timing analysis, in turn, considers not only circuit topology, but also the temporal and functional relations between circuit elements. Functional timing analysis tools may differ by three aspects: the set of sensitization conditions necessary to declare a path as sensitizable (i.e., the so-called path sensitization criterion), the number of paths simultaneously handled and the method used to determine whether sensitization conditions are satisfiable or not. Currently, the two most efficient approaches test the sensitizability of entire sets of paths at a time: one is based on automatic test pattern generation (ATPG) techniques and the other translates the timing analysis problem into a satisfiability (SAT) problem. Although timing analysis has been exhaustively studied in the last fifteen years, some specific topics have not received the required attention yet. One such topic is the applicability of functional timing analysis to circuits containing complex gates. This is the basic concern of this thesis. In addition, and as a necessary step to settle the scenario, a detailed and systematic study on functional timing analysis is also presented.
52

Functional timing analysis of VLSI circuits containing complex gates / Análise de timing funcional de circuitos VLSI contendo portas complexas

Guntzel, Jose Luis Almada January 2000 (has links)
Os recentes avanços experimentados pela tecnologia CMOS tem permitido a fabricação de transistores em dimensões submicrônicas, possibilitando a integração de dezenas de milhões de dispositivos numa única pastilha de silício, os quais podem ser usados na implementação de sistemas eletrônicos muito complexos. Este grande aumento na complexidade dos projetos fez surgir uma demanda por ferramentas de verificação eficientes e sobretudo que incorporassem modelos físicos e computacionais mais adequados. A verificação de timing objetiva determinar se as restrições temporais impostas ao projeto podem ou não ser satisfeitas quando de sua fabricação. Ela pode ser levada a cabo por meio de simulação ou por análise de timing. Apesar da simulação oferecer estimativas mais precisas, ela apresenta a desvantagem de ser dependente de estímulos. Assim, para se assegurar que a situação crítica é considerada, é necessário simularem-se todas as possibilidades de padrões de entrada. Obviamente, isto não é factível para os projetos atuais, dada a alta complexidade que os mesmos apresentam. Para contornar este problema, os projetistas devem lançar mão da análise de timing. A análise de timing é uma abordagem independente de vetor de entrada que modela cada bloco combinacional do circuito como um grafo acíclico direto, o qual é utilizado para estimar o atraso do circuito. As primeiras ferramentas de análise de timing utilizavam apenas a topologia do circuito para estimar o atraso, sendo assim referenciadas como analisadores de timing topológicos. Entretanto, tal aproximação pode resultar em estimativas demasiadamente pessimistas, uma vez que os caminhos mais longos do grafo podem não ser capazes de propagar transições, i.e., podem ser falsos. A análise de timing funcional, por sua vez, considera não apenas a topologia do circuito, mas também as relações temporais e funcionais entre seus elementos. As ferramentas de análise de timing funcional podem diferir por três aspectos: o conjunto de condições necessárias para se declarar um caminho como sensibilizável (i.e., o chamado critério de sensibilização), o número de caminhos simultaneamente tratados e o método usado para determinar se as condições de sensibilização são solúveis ou não. Atualmente, as duas classes de soluções mais eficientes testam simultaneamente a sensibilização de conjuntos inteiros de caminhos: uma baseia-se em técnicas de geração automática de padrões de teste (ATPG) enquanto que a outra transforma o problema de análise de timing em um problema de solvabilidade (SAT). Apesar da análise de timing ter sido exaustivamente estudada nos últimos quinze anos, alguns tópicos específicos não têm recebido a devida atenção. Um tal tópico é a aplicabilidade dos algoritmos de análise de timing funcional para circuitos contendo portas complexas. Este constitui o objeto básico desta tese de doutorado. Além deste objetivo, e como condição sine qua non para o desenvolvimento do trabalho, é apresentado um estudo sistemático e detalhado sobre análise de timing funcional. / The recent advances in CMOS technology have allowed for the fabrication of transistors with submicronic dimensions, making possible the integration of tens of millions devices in a single chip that can be used to build very complex electronic systems. Such increase in complexity of designs has originated a need for more efficient verification tools that could incorporate more appropriate physical and computational models. Timing verification targets at determining whether the timing constraints imposed to the design may be satisfied or not. It can be performed by using circuit simulation or by timing analysis. Although simulation tends to furnish the most accurate estimates, it presents the drawback of being stimuli dependent. Hence, in order to ensure that the critical situation is taken into account, one must exercise all possible input patterns. Obviously, this is not possible to accomplish due to the high complexity of current designs. To circumvent this problem, designers must rely on timing analysis. Timing analysis is an input-independent verification approach that models each combinational block of a circuit as a direct acyclic graph, which is used to estimate the critical delay. First timing analysis tools used only the circuit topology information to estimate circuit delay, thus being referred to as topological timing analyzers. However, such method may result in too pessimistic delay estimates, since the longest paths in the graph may not be able to propagate a transition, that is, may be false. Functional timing analysis, in turn, considers not only circuit topology, but also the temporal and functional relations between circuit elements. Functional timing analysis tools may differ by three aspects: the set of sensitization conditions necessary to declare a path as sensitizable (i.e., the so-called path sensitization criterion), the number of paths simultaneously handled and the method used to determine whether sensitization conditions are satisfiable or not. Currently, the two most efficient approaches test the sensitizability of entire sets of paths at a time: one is based on automatic test pattern generation (ATPG) techniques and the other translates the timing analysis problem into a satisfiability (SAT) problem. Although timing analysis has been exhaustively studied in the last fifteen years, some specific topics have not received the required attention yet. One such topic is the applicability of functional timing analysis to circuits containing complex gates. This is the basic concern of this thesis. In addition, and as a necessary step to settle the scenario, a detailed and systematic study on functional timing analysis is also presented.
53

Functional timing analysis of VLSI circuits containing complex gates / Análise de timing funcional de circuitos VLSI contendo portas complexas

Guntzel, Jose Luis Almada January 2000 (has links)
Os recentes avanços experimentados pela tecnologia CMOS tem permitido a fabricação de transistores em dimensões submicrônicas, possibilitando a integração de dezenas de milhões de dispositivos numa única pastilha de silício, os quais podem ser usados na implementação de sistemas eletrônicos muito complexos. Este grande aumento na complexidade dos projetos fez surgir uma demanda por ferramentas de verificação eficientes e sobretudo que incorporassem modelos físicos e computacionais mais adequados. A verificação de timing objetiva determinar se as restrições temporais impostas ao projeto podem ou não ser satisfeitas quando de sua fabricação. Ela pode ser levada a cabo por meio de simulação ou por análise de timing. Apesar da simulação oferecer estimativas mais precisas, ela apresenta a desvantagem de ser dependente de estímulos. Assim, para se assegurar que a situação crítica é considerada, é necessário simularem-se todas as possibilidades de padrões de entrada. Obviamente, isto não é factível para os projetos atuais, dada a alta complexidade que os mesmos apresentam. Para contornar este problema, os projetistas devem lançar mão da análise de timing. A análise de timing é uma abordagem independente de vetor de entrada que modela cada bloco combinacional do circuito como um grafo acíclico direto, o qual é utilizado para estimar o atraso do circuito. As primeiras ferramentas de análise de timing utilizavam apenas a topologia do circuito para estimar o atraso, sendo assim referenciadas como analisadores de timing topológicos. Entretanto, tal aproximação pode resultar em estimativas demasiadamente pessimistas, uma vez que os caminhos mais longos do grafo podem não ser capazes de propagar transições, i.e., podem ser falsos. A análise de timing funcional, por sua vez, considera não apenas a topologia do circuito, mas também as relações temporais e funcionais entre seus elementos. As ferramentas de análise de timing funcional podem diferir por três aspectos: o conjunto de condições necessárias para se declarar um caminho como sensibilizável (i.e., o chamado critério de sensibilização), o número de caminhos simultaneamente tratados e o método usado para determinar se as condições de sensibilização são solúveis ou não. Atualmente, as duas classes de soluções mais eficientes testam simultaneamente a sensibilização de conjuntos inteiros de caminhos: uma baseia-se em técnicas de geração automática de padrões de teste (ATPG) enquanto que a outra transforma o problema de análise de timing em um problema de solvabilidade (SAT). Apesar da análise de timing ter sido exaustivamente estudada nos últimos quinze anos, alguns tópicos específicos não têm recebido a devida atenção. Um tal tópico é a aplicabilidade dos algoritmos de análise de timing funcional para circuitos contendo portas complexas. Este constitui o objeto básico desta tese de doutorado. Além deste objetivo, e como condição sine qua non para o desenvolvimento do trabalho, é apresentado um estudo sistemático e detalhado sobre análise de timing funcional. / The recent advances in CMOS technology have allowed for the fabrication of transistors with submicronic dimensions, making possible the integration of tens of millions devices in a single chip that can be used to build very complex electronic systems. Such increase in complexity of designs has originated a need for more efficient verification tools that could incorporate more appropriate physical and computational models. Timing verification targets at determining whether the timing constraints imposed to the design may be satisfied or not. It can be performed by using circuit simulation or by timing analysis. Although simulation tends to furnish the most accurate estimates, it presents the drawback of being stimuli dependent. Hence, in order to ensure that the critical situation is taken into account, one must exercise all possible input patterns. Obviously, this is not possible to accomplish due to the high complexity of current designs. To circumvent this problem, designers must rely on timing analysis. Timing analysis is an input-independent verification approach that models each combinational block of a circuit as a direct acyclic graph, which is used to estimate the critical delay. First timing analysis tools used only the circuit topology information to estimate circuit delay, thus being referred to as topological timing analyzers. However, such method may result in too pessimistic delay estimates, since the longest paths in the graph may not be able to propagate a transition, that is, may be false. Functional timing analysis, in turn, considers not only circuit topology, but also the temporal and functional relations between circuit elements. Functional timing analysis tools may differ by three aspects: the set of sensitization conditions necessary to declare a path as sensitizable (i.e., the so-called path sensitization criterion), the number of paths simultaneously handled and the method used to determine whether sensitization conditions are satisfiable or not. Currently, the two most efficient approaches test the sensitizability of entire sets of paths at a time: one is based on automatic test pattern generation (ATPG) techniques and the other translates the timing analysis problem into a satisfiability (SAT) problem. Although timing analysis has been exhaustively studied in the last fifteen years, some specific topics have not received the required attention yet. One such topic is the applicability of functional timing analysis to circuits containing complex gates. This is the basic concern of this thesis. In addition, and as a necessary step to settle the scenario, a detailed and systematic study on functional timing analysis is also presented.
54

Testovací modul pro vybranou část standardu IEEE 802.1Q / Tester for chosen sub-standard of the IEEE 802.1Q

Avramović, Nikola January 2019 (has links)
Tato práce se zabývá analyzováním IEEE 802.1Q standardu TSN skupiny a návrhem testovacího modulu. Testovací modul je napsán v jazyku VHDL a je možné jej implementovat do Intel Stratix® V GX FPGA (5SGXEA7N2F45C2) vývojové desky. Standard IEEE 802.1Q (TSN) definuje deterministickou komunikace přes Ethernet sít, v reálném čase, požíváním globálního času a správným rozvrhem vysíláním a příjmem zpráv. Hlavní funkce tohoto standardu jsou: časová synchronizace, plánování provozu a konfigurace sítě. Každá z těchto funkcí je definovaná pomocí více různých podskupin tohoto standardu. Podle definice IEEE 802.1Q standardu je možno tyto podskupiny vzájemně libovolně kombinovat. Některé podskupiny standardu nemohou fungovat nezávisle, musí využívat funkce jiných podskupin standardu. Realizace funkce podskupin standardu je možná softwarově, hardwarově, nebo jejich kombinací. Na základě výše uvedených fakt, implementace podskupin standardu, které jsou softwarově související, byly vyloučené. Taky byly vyloučené podskupiny standardů, které jsou závislé na jiných podskupinách. IEEE 802.1Qbu byl vybrán jako vhodná část pro realizaci hardwarového testu. Různé způsoby testování byly vysvětleny jako DFT, BIST, ATPG a další jiné techniky. Pro hardwarové testování byla vybrána „Protocol Aware (PA)“technika, protože tato technika zrychluje testování, dovoluje opakovanou použitelnost a taky zkracuje dobu uvedení na trh. Testovací modul se skládá ze dvou objektů (generátor a monitor), které mají implementovanou IEEE 802.1Qbu podskupinu standardu. Funkce generátoru je vygenerovat náhodné nebo nenáhodné impulzy a potom je poslat do testovaného zařízeni ve správném definovaném protokolu. Funkce monitoru je přijat ethernet rámce a ověřit jejich správnost. Objekty jsou navrhnuty stejným způsobem na „TOP“úrovni a skládají se ze čtyř modulů: Avalon MM rozhraní, dvou šablon a jednoho portu. Avalon MM rozhraní bylo vytvořeno pro komunikaci softwaru s hardwarem. Tento modul přijme pakety ze softwaru a potom je dekóduje podle definovaného protokolu a „pod-protokolu “. „Pod-protokol“se skládá z příkazu a hodnoty daného příkazu. Podle dekódovaného příkazu a hodnot daných příkazem je kontrolovaný celý objekt. Šablona se používá na generování nebo ověřování náhodných nebo nenáhodných dat. Dvě šablony byly implementovány pro expresní ověřování nebo preempční transakce, definované IEEE 802.1Qbu. Porty byly vytvořené pro komunikaci mezi testovaným zařízením a šablonou podle daného standardu. Port „generátor“má za úkol vybrat a vyslat rámce podle priority a času vysílaní. Port „monitor“přijme rámce do „content-addressable memory”, která ověřuje priority rámce a podle toho je posílá do správné šablony. Výsledky prokázaly, že tato testovací technika dosahuje vysoké rychlosti a rychlé implementace.
55

Metody pro testování analogových obvodů / Methods for testing of analog circuits

Kincl, Zdeněk January 2013 (has links)
Práce se zabývá metodami pro testování lineárních analogových obvodů v kmitočtové oblasti. Cílem je navrhnout efektivní metody pro automatické generování testovacího plánu. Snížením počtu měření a výpočetní náročnosti lze výrazně snížit náklady za testování. Práce se zabývá multifrekveční parametrickou poruchovou analýzou, která byla plně implementována do programu Matlab. Vhodnou volbou testovacích kmitočtů lze potlačit chyby měření a chyby způsobené výrobními tolerancemi obvodových prvků. Navržené metody pro optimální volbu kmitočtů byly statisticky ověřeny metodou MonteCarlo. Pro zvýšení přesnosti a snížení výpočetní náročnosti poruchové analýzy byly vyvinuty postupy založené na metodě nejmenších čtverců a přibližné symbolické analýze.

Page generated in 0.0148 seconds