• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synergistic effects of combining PARP inhibitor (AZD2281) and ATR inhibitor (AZD6738) in Ewing Sarcoma cell lines

Meyer, Stephanie C. 03 July 2018 (has links)
Ewing Sarcoma (ES) is an aggressive pediatric solid tumor. Even though overall-survival for localized patients is approximately 70%, the overall-survival for high risk ES patients has not improved in the last 20 years. Therefore, there is a need for exploration of new therapeutic agents in ES. Recent evidence has demonstrated that ES cells behave like BRCA-deficient tumor types which renders them sensitive to PARP inhibitors in vitro and in vivo. However, a phase II study of the efficacy of single-agent PARP inhibition in patients with relapsed ES did not significantly improve outcome. As single-agent therapy is rarely expected to result in significant clinical responses, in this study, we plan to validate potential targeted combination therapies with PARP inhibitors in ES. Since ES appears to demonstrated BRCA-deficient biology with impaired homologous recombination, cells are expected to be sensitive to both PARP inhibitors and ATR inhibitors, drugs which have a role in regulating DNA damage and impairing homologous recombination. In breast cancer and ovarian cell lines with genetic BRCA-deficiency, PARP and ATR inhibitors have synergistic activity. We hypothesize that these inhibitors will also have synergistic anti-Ewing activity. Furthermore, we recognize that ES cells demonstrate remarkably quiet genomes suggesting that there is minimal ongoing DNA-damage when cells are growing unperturbed. Therefore, we also plan to test the effect of adding low-dose genotoxic chemotherapy to induce additional sensitivity to the combination of PARP and ATR inhibitors in ES. The specific aims of this study were to explore the possible anti-tumor effect of PARP inhibitors combined with ATR inhibitors in ES cell lines, and to explore whether low dose genotoxic chemotherapy with SN38 can potentiate the anti-tumor effect of combined PARP and ATR inhibition in ES cell lines. We studied the anti-Ewing Sarcoma effect of the combination of a PARP inhibitor, AZD2281, and an ATR inhibitor, AZD6738, across a range of doses with and without low doses of a DNA damaging agent, SN38 (irinotecan metabolite), in two ES cell lines. We analyzed synergy by determining the Combination Index (CI) and Fractional Inhibition (FA) of each combination. We found that the ATR inhibitor, AZD6738, was synergistic across large range of concentrations when combined with the PARP inhibitor, AZD2281, in ES cell lines. We also found that treatment of cells with low doses of SN38 increases ES cell sensitivity to treatment with the PARP inhibitor and ATR inhibitor combination. This study provides preclinical support for additional studies exploring these combinations in ES. Given the low number of pediatric patients with ES compared to adult cancer patients, there will be limited attempts in combining these agents in clinical trials. Therefore, the development of an in vivo trial testing the safety and efficacy of this combination in ES mouse models is proposed. / 2020-07-03T00:00:00Z
2

Differing functions of ATR kinase in human epidermal keratinocytes exposed to Ultraviolet B Radiation

Shaj, Kavya 30 August 2019 (has links)
No description available.
3

The three methyls : the function and therapeutic potential of histone H3K36 trimethylation

Pfister, Sophia Xiao January 2014 (has links)
DNA is wrapped around proteins called histones, whose modification regulates numerous cellular processes. Therefore it is not surprising that mutations in the genes that modify the histones are frequently associated with human cancer. For example, mutations in SETD2, encoding the sole enzyme that catalyses histone H3 lysine 36 trimethylation (H3K36me3), occur frequently in multiple cancer types. This identifies H3K36me3 loss as an important event in cancer development, and also as a potential therapeutic target. This thesis investigates the following questions: (1) how does the loss of H3K36me3 contribute to cancer development; and (2) what therapy can be used to kill cancers that have already lost H3K36me3. To answer the first question, this thesis shows that H3K36me3 facilitates the accurate repair of DNA double-stranded breaks (DSBs) by homologous recombination (HR). H3K36me3 promotes HR by recruiting CtIP to the site of DSBs to carry out resection, allowing the binding of HR proteins (such as RPA and RAD51) to the damage sites. Thus it is proposed that error-free HR repair within H3K36me3-decorated transcriptionally active genomic regions suppresses genetic mutations which could promote tumourigenesis. To answer the second question, this thesis reveals a clinically relevant synthetic lethal interaction between H3K36me3 loss and WEE1 inhibition. WEE1 inhibition selectively kills H3K36me3-deficient cells by inhibiting DNA replication, and subsequent fork stalling results in MUS81 endonuclease-dependent DNA damage and cell death. The mechanism is found to be synergistic depletion of RRM2 (ribonucleotide reductase small subunit), the enzyme that generates deoxyribonucleotides (dNTPs). This work reveals two pathways that regulate RRM2: one involves transcriptional activation of RRM2 by H3K36me3, and the other involves RRM2 degradation regulated by Cyclin-Dependent Kinase, CDK1 (which is controlled by WEE1, CHK1 and ATR). Based on this mechanism, the synthetic lethal interaction is expanded, from between two genes, to between two pathways. Supported by in vivo experiments, the study suggests that patients with cancers that have lost H3K36me3 could benefit from treatment with the inhibitors of WEE1, CHK1 or ATR.
4

Functions of ATR Kinase in Terminally Differentiated Human Epidermal Keratinocyles and in Human Ex-Vivo Skin After Exposure to Ultraviolet B Radiation

Gogusetti, Vivek Shashank Nag 02 June 2021 (has links)
No description available.

Page generated in 0.0325 seconds