Spelling suggestions: "subject:"abgasturbolader"" "subject:"abgasturboladern""
1 |
Experimental investigation and extended simulation of turbocharger non-adiabatic performanceShaaban, Sameh. January 2004 (has links) (PDF)
Hannover, University, Diss., 2004.
|
2 |
Experimentelle und analytische Fügestellenanalyse am Abgasturbolader Untersuchung des Übertragungsverhaltens von Fügestellen am AbgasturboladerSwoboda, Stefan January 2008 (has links)
Zugl.: Clausthal, Techn. Univ., Diss., 2008
|
3 |
Neuentwicklung eines schlagwettergeschützten Dieselmotors der Leistungsklasse bis 100 kW mit Abgasturbolader /Charlier, Frank. January 2006 (has links)
Zugl.: Aachen, Techn. Hochsch., Diss., 2006.
|
4 |
Untersuchungen zum Reibleistungsverhalten von Wellen-Lagerungen für PKW-AbgasturboladerSchmitt, Steffen January 2007 (has links)
Zugl.: Stuttgart, Univ., Diss., 2007
|
5 |
Objektorientierte Modellbildung und nichtlineare prädiktive Regelung von Dieselmotoren /Richert, Felix. January 2006 (has links)
Techn. Hochsch., Diss., 2005--Aachen.
|
6 |
Objektorientierte Modellbildung und nichtlineare prädiktive Regelung von DieselmotorenRichert, Felix. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2005--Aachen.
|
7 |
Neue Aufladestrategien für ein spontanes Drehmomentresponseverhalten turboaufgeladener OttomotorenFriedrich, Jürgen 12 November 2003 (has links) (PDF)
Mit der starken Verbreitung des turboaufgeladenen Dieselmotors seit etwa 10 Jahren gewinnt auch der mittels Abgasturbolader aufgeladene Ottomotor mehr an Bedeutung. Im dynamischen Betriebsverhalten zeigen diese Motoren, vor allem bei Drehzahlen unter 2000 U/min, einen verzögerten Mitteldruckaufbau. Mit konventionellen Ansätzen ist dieses Problem nicht zufrieden stellend zu lösen, deshalb wurden Ansätze zur Unterstützung im dynamischen Betrieb erstellt. In dieser Arbeit wurden die Lösungen mit dem größten Potential zur Verbesserung untersucht. Die untersuchten Ansätze greifen zum Einen in das Gebiet der gezielten Einspeisung von dauerhaft verfügbarer Zusatzenergie und zum Anderen zur Verteilung der Verdichtungsarbeit auf zwei Aufladestufen. Als Zielstellung für die Verbesserungen des dynamischen Betriebsverhaltens wurde das Erreichen eines effektiven Mitteldruckes von 16.5 bar in einer Zeit kleiner einer Sekunde ab einer Motordrehzahl von 1700 U/min formuliert. Im Falle der Einspeisung von Zusatzenergie muss diese beliebig oft und in kurzen Abständen verfügbar sein. Im Kapitel Einspeisung von Zusatzenergie wurden die Konzepte elektrische unterstützter ATL sowie elektrischer Zusatzverdichter miteinander verglichen. Mit Hilfe rechnerischer Parameterstudien wurden die Randbedingungen für den Einsatz eines elektrischen Verdichters ermittelt. Dabei wurde festgestellt, dass die Dimensionierung des eingesetzten Boosterverdichters ein Kompromiss zwischen Potential im Transientbetrieb und ausreichender Kennfeldbreite zur Anhebung der stationären Volllast im untersten Motordrehzahlbereich ist. Die Berechnungen haben zudem ergeben, dass die zu erwartende Begrenzung der verfügbaren elektrischen Bordnetzleistung den eBooster vorrangig für den Einsatz von Motoren mit einem Hubraum kleiner 2.5 l prädestiniert. Eine weitere Variante sieht die serielle Anordnung eines mechanisch angetriebenen Zusatzverdichters vor. Für die Umsetzung als zuschaltbares System reduziert sich die Auswahl auf einen mit geringem Massenträgheitsmoment gekennzeichneten Spirallader. Als dritte Variante wurde eine geregelte zweistufige Aufladung aufgegriffen. Der Vergleich der Simulationsergebnisse wies für alle drei Varianten das Potential zur Umsetzung der formulierten Forderung zur Dynamikverbesserung nach. Bei einer Motordrehzahl von 2000 U/min erreichten der Pscroll nach 580 ms und die beiden anderen Varianten nach jeweils 850 ms das Zielmoment. Gleichzeitig ergab die Analyse des für den Druckaufbau im System verantwortlichen Parameters Massenstrom der Strömungsmaschinen eine unterschiedliche Charakteristik der einzelnen Varianten. Während der Pscroll unabhängig von der Motordrehzahl sofort nach Lastaufschaltung eine hohe Überschussluftmasse, bezogen auf die vom Motor geschluckte Masse, fördert, vergeht sowohl beim eBooster als auch bei der zweistufigen Aufladung durch die notwendige Hochlaufzeit der Radialverdichter eine Zeitspanne bis zum Aufbau einer Überschussmasse. Die Zeitspanne während des Hochlaufs von der Ausgangsdrehzahl bis zur Enddrehzahl beträgt beim Pscroll nur etwa 80 ms, während bei den anderen Systemen ein Zeit von weniger als 400 ms auch theoretisch nicht darstellbar ist. Bei dem Übergang zu realen Hardwarekomponenten am Prüfstand vergrößerte sich der Abstand zwischen Pscroll und dem elektrischen Zusatzverdichter. Das System Pscroll greift auf weitestgehend bekannte und erprobte Technik zurück, wodurch gegenüber der Simulation keine Einschränkungen zu verzeichnen waren. Mit dem eBooster ergaben sich für den Elektromotor deutliche Abweichungen von dem für die Simulation zur Verfügung gestellten Wirkungsgradverlauf über der Drehzahl im Vergleich zum Tatsächlichen. Speziell in der Beschleunigungsphase ergeben sich gravierende Einbussen. Mit dem höheren Leistungsangebot am Prüfstand (4 kW statt 2.5 kW) gegenüber der Simulation konnte das Potential des Systems nachgewiesen werden. Bei einer Leistungsbeschränkung reduzieren sich die Gewinne spürbar.
|
8 |
Neue Aufladestrategien für ein spontanes Drehmomentresponseverhalten turboaufgeladener OttomotorenFriedrich, Jürgen 17 December 2002 (has links)
Mit der starken Verbreitung des turboaufgeladenen Dieselmotors seit etwa 10 Jahren gewinnt auch der mittels Abgasturbolader aufgeladene Ottomotor mehr an Bedeutung. Im dynamischen Betriebsverhalten zeigen diese Motoren, vor allem bei Drehzahlen unter 2000 U/min, einen verzögerten Mitteldruckaufbau. Mit konventionellen Ansätzen ist dieses Problem nicht zufrieden stellend zu lösen, deshalb wurden Ansätze zur Unterstützung im dynamischen Betrieb erstellt. In dieser Arbeit wurden die Lösungen mit dem größten Potential zur Verbesserung untersucht. Die untersuchten Ansätze greifen zum Einen in das Gebiet der gezielten Einspeisung von dauerhaft verfügbarer Zusatzenergie und zum Anderen zur Verteilung der Verdichtungsarbeit auf zwei Aufladestufen. Als Zielstellung für die Verbesserungen des dynamischen Betriebsverhaltens wurde das Erreichen eines effektiven Mitteldruckes von 16.5 bar in einer Zeit kleiner einer Sekunde ab einer Motordrehzahl von 1700 U/min formuliert. Im Falle der Einspeisung von Zusatzenergie muss diese beliebig oft und in kurzen Abständen verfügbar sein. Im Kapitel Einspeisung von Zusatzenergie wurden die Konzepte elektrische unterstützter ATL sowie elektrischer Zusatzverdichter miteinander verglichen. Mit Hilfe rechnerischer Parameterstudien wurden die Randbedingungen für den Einsatz eines elektrischen Verdichters ermittelt. Dabei wurde festgestellt, dass die Dimensionierung des eingesetzten Boosterverdichters ein Kompromiss zwischen Potential im Transientbetrieb und ausreichender Kennfeldbreite zur Anhebung der stationären Volllast im untersten Motordrehzahlbereich ist. Die Berechnungen haben zudem ergeben, dass die zu erwartende Begrenzung der verfügbaren elektrischen Bordnetzleistung den eBooster vorrangig für den Einsatz von Motoren mit einem Hubraum kleiner 2.5 l prädestiniert. Eine weitere Variante sieht die serielle Anordnung eines mechanisch angetriebenen Zusatzverdichters vor. Für die Umsetzung als zuschaltbares System reduziert sich die Auswahl auf einen mit geringem Massenträgheitsmoment gekennzeichneten Spirallader. Als dritte Variante wurde eine geregelte zweistufige Aufladung aufgegriffen. Der Vergleich der Simulationsergebnisse wies für alle drei Varianten das Potential zur Umsetzung der formulierten Forderung zur Dynamikverbesserung nach. Bei einer Motordrehzahl von 2000 U/min erreichten der Pscroll nach 580 ms und die beiden anderen Varianten nach jeweils 850 ms das Zielmoment. Gleichzeitig ergab die Analyse des für den Druckaufbau im System verantwortlichen Parameters Massenstrom der Strömungsmaschinen eine unterschiedliche Charakteristik der einzelnen Varianten. Während der Pscroll unabhängig von der Motordrehzahl sofort nach Lastaufschaltung eine hohe Überschussluftmasse, bezogen auf die vom Motor geschluckte Masse, fördert, vergeht sowohl beim eBooster als auch bei der zweistufigen Aufladung durch die notwendige Hochlaufzeit der Radialverdichter eine Zeitspanne bis zum Aufbau einer Überschussmasse. Die Zeitspanne während des Hochlaufs von der Ausgangsdrehzahl bis zur Enddrehzahl beträgt beim Pscroll nur etwa 80 ms, während bei den anderen Systemen ein Zeit von weniger als 400 ms auch theoretisch nicht darstellbar ist. Bei dem Übergang zu realen Hardwarekomponenten am Prüfstand vergrößerte sich der Abstand zwischen Pscroll und dem elektrischen Zusatzverdichter. Das System Pscroll greift auf weitestgehend bekannte und erprobte Technik zurück, wodurch gegenüber der Simulation keine Einschränkungen zu verzeichnen waren. Mit dem eBooster ergaben sich für den Elektromotor deutliche Abweichungen von dem für die Simulation zur Verfügung gestellten Wirkungsgradverlauf über der Drehzahl im Vergleich zum Tatsächlichen. Speziell in der Beschleunigungsphase ergeben sich gravierende Einbussen. Mit dem höheren Leistungsangebot am Prüfstand (4 kW statt 2.5 kW) gegenüber der Simulation konnte das Potential des Systems nachgewiesen werden. Bei einer Leistungsbeschränkung reduzieren sich die Gewinne spürbar.
|
9 |
Modellbildung von Abgasturboladern mit variabler Turbinengeometrie an schnellaufenden DieselmotorenKessel, Jens-Achim. Unknown Date (has links)
Techn. Universiẗat, Diss., 2003--Darmstadt.
|
10 |
Entwicklung eines variablen Turbolader-Verdichters für schwere Nutzfahrzeugmotoren / Development of a turbocharger compressor with variable geometry for heavy duty truck enginesWöhr, Michael 19 December 2016 (has links) (PDF)
Die Entwicklung schwerer Nutzfahrzeugmotoren unterliegt dem Zielkonflikt zwischen möglichst geringen Betriebskosten, hoher Leistung und der Einhaltung von Emissionsvorschriften. Bezüglich der Auslegung der Verdichterstufe des Abgasturboladers resultiert dies in einem Kompromiss zwischen Kennfeldbreite und den Wirkungsgraden im Nennpunkt sowie im Hauptfahrbereich. In der vorliegenden wissenschaftlichen Publikation wird untersucht, ob mit Hilfe einer geometrischen Verstellbarkeit des Verdichters eine bessere Lösung für das anspruchsvolle Anforderungsprofil gefunden werden kann. Das Ziel ist eine Reduktion des Kraftstoffverbrauchs eines 12,8l NFZ-Dieselmotors im schweren Fernverkehr, ohne dass hierbei Abstriche bezüglich weiterer Leistungsmerkmale der Verdichterstufe in Kauf genommen werden müssen.
In einem ersten Schritt wird hierzu mit Hilfe der Auswertung von Lastkollektivdaten der für den Kraftstoffverbrauch relevante Betriebsbereich der Basis-Verdichterstufe identifiziert. Dieser befindet sich bei vergleichsweise geringen Massenströmen und hohen Totaldruckverhältnissen in der Nähe der Volllast-Schlucklinie im Verdichterkennfeld. Die Auswertung von ein- und dreidimensionalen Strömungssimulationen führt zur Erkenntnis, dass die hohen Tangentialgeschwindigkeiten im unbeschaufelten Diffusor ausschlagge- bend sind für die Strömungsverluste innerhalb der Verdichterstufe im Hauptfahrbereich. Eine Möglichkeit die Geschwindigkeitskomponente in Umfangsrichtung zu reduzieren, ist die Verwendung eines beschaufelten Diffusors. Zur Überprüfung des Potentials werden im Rahmen einer Parameterstudie 47 unterschiedliche Nachleitgitter im Diffusor der Basis-Verdichterstufe am Heißgasprüfstand untersucht. Es stellt sich heraus, dass durch den Einsatz einer Nachleitbeschaufelung der Verdichterwirkungsgrad um bis zu 8 Prozentpunkte verbessert werden kann, die Kennfeldbreite jedoch nicht ausreicht, um die motorischen Anforderungen bezüglich der Pumpstabilität oder der Bremsleistung zu erfüllen.
Resultierend aus diesen Erkenntnissen werden drei variable Verdichter entwickelt, mit dem Ziel, den Wirkungsgradvorteil beschaufelter Diffusoren mittels einer geometrischen Verstellbarkeit für den schweren Nutzfahrzeugmotor nutzbar zu machen. Die Bewertung hinsichtlich der Ziele und Anforderungen erfolgt anhand von Versuchen am Heißgas- sowie Vollmotorenprüfstand.
Die Variabilität mit der geringsten Komplexität ist die Kombination aus starrem Nachleitgitter und Schubumluftventil. Das System zeichnet sich dadurch aus, dass Strömungsabrisse im Bereich des Nachleitgitters durch Aktivieren des Schubumluftventils und somit Öffnen eines Rezirkulationskanals im Verdichtergehäuse in pumpkritischen Situationen vermieden werden können. Der Verzicht auf bewegliche Teile im Diffusor resultiert in der höchsten Reduktion des Kraftstoffverbrauchs um 0,6 − 1,4% im Hauptfahrbereich.
Der Doppeldiffusor besitzt zwei separate Strömungskanäle unterschiedlicher Geometrie, die im Betrieb durch eine axiale Verschiebung mit Druckluft aktiviert werden können. Dieses völlig neuartige Konzept ermöglicht es, die Auslegungsziele auf zwei Diffusoren aufzuteilen und somit für jede Kennfeldhälfte die jeweils optimale Schaufelgeometrie auszuwählen. Mit dieser Variabilität kann die Einspritzmenge im Hauptfahrbereich um 0,5 − 0,8 Prozent gesenkt werden.
Das System mit der höchsten Komplexität ist der Verdichter mit rotierbarer Nachleitbeschaufelung. Über einen elektronischen Steller können die Anstellwinkel und Halsquerschnitte in jedem Betriebspunkt den Anströmbedingungen angepasst werden, um den jeweils bestmöglichen Wirkungsgrad zu erhalten. Aufgrund der anspruchsvollen geometrischen Zwangsbedingungen bei der Auswahl der Schaufelgeometrie besitzt der Dreh- schaufler mit 0,3−0,6% das geringste Potential zur Verbesserung der Kraftstoffsparsamkeit, erzielt jedoch das beste Ergebnis bezüglich der Bremsleistung und der Pumpstabilität. / Reducing the total costs of ownership, achieving the rated engine power and compliance with exhaust-emission legislation are competing goals regarding the development of heavy duty engines. This leads to demanding requirements for the aerodynamic design of the turbocharger compressor stage such as high efficiencies at various operating points and a broad map width. The aim of the present doctoral thesis is to investigate the potential of a compressor with variable geometry in order to obtain a better compromise between efficiency and compressor map width for the purpose of increasing fuel economy without sacrifices concerning the rated power, engine brake performance or surge stability.
In a first step, the evaluation of load cycles yields operating points on which the fuel consumption is heavily dependent. Results of 1D- and 3D fluid flow simulations show that the high tangential velocity in the vaneless diffusor is the main cause for the reduction of compressor efficiency in the main driving range. A parameter study containing 47 different geometries is conducted at a hot gas test rig in order to examine the potential of vaned diffusers regarding the reduction of the tangential velocity component. It can be seen that by introducing diffuser vanes compressor efficiency can be increased by up to 8 percent. The narrow map width however prevents the use of a fixed geometry for heavy duty engines. Based on those results three variable geometry compressors are developed with the goal of maintaining the efficiency benefit of vaned diffusers while increasing the map width by adjustable geometric features. The evaluation of the variable compressor systems is based on hot gas and engine test bench measurements.
The variable compressor system with the lowest complexity utilizes a recirculation valve in the compressor housing in combination with a fixed geometry vaned diffuser in order to improve the surge margin for a short period of time at a sudden load drop. The abandonment of functional gaps in the diffuser leads to the highest improvement of fuel economy of 0,6 − 1,4% in the main driving range.
The compressor with stacked diffuser vanes has two separate flow channels in the diffuser. During engine operation only one vaned diffuser geometry is active. The axial movement is performed via pressure chambers in the compressor and bearing housing. The two diffuser geometries are either optimized for high or low mass flows. This way the fuel consumption in the main driving range can be reduced by 0,5 − 0,8%.
The compressor with pivoting vanes in the diffuser has the highest complexity of all systems. With the aid of an electronic actuator the vane inlet angle and throat area can be adjusted to the impeller outlet flow conditions at each operating point. As a consequence the pivoting vanes compressor achieves the best results regarding engine brake performance and surge stability. The fuel economy in the main driving range can be improved by 0,3 − 0,6%. Higher benefits are prevented by demanding geometric constraints in order to ensure the rotatability of the vanes and to prevent vibrations of the impeller blades.
|
Page generated in 0.0359 seconds