Spelling suggestions: "subject:"bilinearization"" "subject:"quasilinearization""
1 |
Simulation of Piecewise Smooth Differential Algebraic Equations with Application to Gas NetworksStreubel, Tom 10 June 2022 (has links)
Zuweilen wird gefördertes Erdgas als eine Brückentechnologie noch eine Weile erhalten bleiben, aber unsere Gasnetzinfrastruktur hat auch in einer Ära post-fossiler Brennstoffe eine Zukunft, um Klima-neutral erzeugtes Methan, Ammoniak oder Wasserstoff zu transportieren.
Damit die Dispatcher der Zukunft, in einer sich fortwährend dynamisierenden Marktsituation, mit sich beständig wechselnden Kleinstanbietern, auch weiterhin einen sicheren Gasnetzbetrieb ermöglichen und garantieren können, werden sie auf moderne, schnelle Simulations- sowie performante Optimierungstechnologie angewiesen sein. Der Schlüssel dazu liegt in einem besseren Verständnis zur numerischen Behandlung nicht differenzierbarer Funktionen und diese Arbeit möchte einen Beitrag hierzu leisten.
Wir werden stückweise differenzierbare Funktionen in sog. Abs-Normalen Form betrachten.
Durch einen Prozess, der Abs-Linearisierung genannt wird, können wir stückweise lineare Approximationsmodelle erster Ordnung, mittels Techniken der algorithmischen Differentiation erzeugen.
Jene Modelle können über Matrizen und Vektoren mittels gängiger Software-Bibliotheken der numerischen linearen Algebra auf Computersystemen ausgedrückt, gespeichert und behandelt werden.
Über die Generalisierung der Formel von Faà di Bruno können auch Splinefunktionen höherer Ordnung generiert werden, was wiederum zu Annäherungsmodellen mit besserer Güte führt.
Darauf aufbauend lassen sich gemischte Taylor-Kollokationsmethoden, darunter die mit Ordnung zwei konvergente generalisierte Trapezmethode, zur Integration von Gasnetzen, in Form von nicht glatten Algebro-Differentialgleichungssystemen, definieren.
Numerische Experimente demonstrieren das Potential.
Da solche implizite Integratoren auch nicht lineare und in unserem Falle zugleich auch stückweise differenzierbare Gleichungssysteme erzeugen, die es als Unterproblem zu lösen gilt, werden wir uns auch die stückweise differenzierbare, sowie die stückweise lineare Newtonmethode betrachten. / As of yet natural gas will remain as a bridging technology, but our gas grid infrastructure does have a future in a post-fossil fuel era for the transportation of carbon-free produced methane, ammonia or hydrogen.
In order for future dispatchers to continue to enable and guarantee safe gas network operations in a continuously changing market situation with constantly switching micro-suppliers, they will be dependent on modern, fast simulation as well as high-performant optimization technology. The key to such a technology resides in a better understanding of the numerical treatment of non-differentiable functions and this work aims to contribute here.
We will consider piecewise differentiable functions in so-called abs-normal form.
Through a process called abs-linearization, we can generate piecewise linear approximation models of order one, using techniques of algorithmic differentiation.
Those models can be expressed, stored and treated numerically as matrices and vectors via common software libraries of numerical linear algebra.
Generalizing the Faà di Bruno's formula yields higher order spline functions, which in turn leads to even higher order approximation models.
Based on this, mixed Taylor-Collocation methods, including the generalized trapezoidal method converging with an order of two, can be defined for the integration of gas networks represented in terms of non-smooth system of differential algebraic equations.
Numerical experiments will demonstrate the potential.
Since those implicit integrators do generate non-linear and, in our case, piecewise differentiable systems of equations as sub-problems, it will be necessary to consider the piecewise differentiable, as well as the piecewise linear Newton method in advance.
|
2 |
Non-Smooth Optimization by Abs-Linearization in Reflexive Function SpacesWeiß, Olga 11 March 2022 (has links)
Nichtglatte Optimierungsprobleme in reflexiven Banachräumen treten in vielen Anwendungen auf. Häufig wird angenommen, dass alle vorkommenden Nichtdifferenzierbarkeiten durch Lipschitz-stetige Operatoren wie abs, min und max gegeben sind. Bei solchen Problemen kann es sich zum Beispiel um optimale Steuerungsprobleme mit möglicherweise nicht glatten Zielfunktionen handeln, welche durch partielle Differentialgleichungen (PDG) eingeschränkt sind, die ebenfalls nicht glatte Terme enthalten können.
Eine effiziente und robuste Lösung erfordert eine Kombination numerischer Simulationen und spezifischer Optimierungsalgorithmen.
Lokal Lipschitz-stetige, nichtglatte Nemytzkii-Operatoren, welche direkt in der Problemformulierung auftreten, spielen eine wesentliche Rolle in der Untersuchung der zugrundeliegenden Optimierungsprobleme.
In dieser Dissertation werden zwei spezifische Methoden und Algorithmen zur Lösung solcher nichtglatter Optimierungsprobleme in reflexiven Banachräumen vorgestellt und diskutiert.
Als erste Lösungsmethode wird in dieser Dissertation die Minimierung von nichtglatten Operatoren in reflexiven Banachräumen mittels sukzessiver quadratischer Überschätzung vorgestellt, SALMIN.
Ein neuartiger Optimierungsansatz für Optimierungsprobleme mit nichtglatten elliptischen PDG-Beschränkungen, welcher auf expliziter Strukturausnutzung beruht, stellt die zweite Lösungsmethode dar, SCALi.
Das zentrale Merkmal dieser Methoden ist ein geeigneter Umgang mit Nichtglattheiten. Besonderes Augenmerk liegt dabei auf der zugrundeliegenden nichtglatten Struktur des Problems und der effektiven Ausnutzung dieser, um das Optimierungsproblem auf angemessene und effiziente Weise zu lösen. / Non-smooth optimization problems in reflexive Banach spaces arise in many applications. Frequently, all non-differentiabilities involved are assumed to be given by Lipschitz-continuous operators such as abs, min and max. For example, such problems can refer to optimal control problems with possibly non-smooth objective functionals constrained by partial differential equations (PDEs) which can also include non-smooth terms. Their efficient as well as robust solution requires numerical simulations combined with specific optimization algorithms.
Locally Lipschitz-continuous non-smooth non-linearities described by appropriate Nemytzkii operators which arise directly in the problem formulation play an essential role in the study of the underlying optimization problems.
In this dissertation, two specific solution methods and algorithms to solve such non-smooth optimization problems in reflexive Banach spaces are proposed and discussed.
The minimization of non-smooth operators in reflexive Banach spaces by means of successive quadratic overestimation is presented as the first solution method, SALMIN.
A novel structure exploiting optimization approach for optimization problems with non-smooth elliptic PDE constraints constitutes the second solution method, SCALi.
The central feature of these methods is the appropriate handling of non-differentiabilities. Special focus lies on the underlying structure of the problem stemming from the non-smoothness and how it can be effectively exploited to solve the optimization problem in an appropriate and efficient way.
|
3 |
Solving Constrained Piecewise Linear Optimization Problems by Exploiting the Abs-linear ApproachKreimeier, Timo 06 December 2023 (has links)
In dieser Arbeit wird ein Algorithmus zur Lösung von endlichdimensionalen Optimierungsproblemen mit stückweise linearer Zielfunktion und stückweise linearen Nebenbedingungen vorgestellt. Dabei wird angenommen, dass die Funktionen in der sogenannten Abs-Linear Form, einer Matrix-Vektor-Darstellung, vorliegen. Mit Hilfe dieser Form lässt sich der Urbildraum in Polyeder zerlegen, so dass die Nichtglattheiten der stückweise linearen Funktionen mit den Kanten der Polyeder zusammenfallen können.
Für die Klasse der abs-linearen Funktionen werden sowohl für den unbeschränkten als auch für den beschränkten Fall notwendige und hinreichende Optimalitätsbedingungen bewiesen, die in polynomialer Zeit verifiziert werden können.
Für unbeschränkte stückweise lineare Optimierungsprobleme haben Andrea Walther und Andreas Griewank bereits 2019 mit der Active Signature Method (ASM) einen Lösungsalgorithmus vorgestellt. Aufbauend auf dieser Methode und in Kombination mit der Idee der aktiven Mengen Strategie zur Behandlung von Ungleichungsnebenbedingungen entsteht ein neuer Algorithmus mit dem Namen Constrained Active Signature Method (CASM) für beschränkte Probleme. Beide Algorithmen nutzen die stückweise lineare Struktur der Funktionen explizit aus, indem sie die Abs-Linear Form verwenden. Teil der Analyse der Algorithmen ist der Nachweis der endlichen Konvergenz zu lokalen Minima der jeweiligen Probleme sowie die Betrachtung effizienter Berechnung von Lösungen der in jeder Iteration der Algorithmen auftretenden Sattelpunktsysteme.
Die numerische Performanz von CASM wird anhand verschiedener Beispiele demonstriert. Dazu gehören akademische Probleme, einschließlich bi-level und lineare Komplementaritätsprobleme, sowie Anwendungsprobleme aus der Gasnetzwerkoptimierung und dem Einzelhandel. / This thesis presents an algorithm for solving finite-dimensional optimization problems with a piecewise linear objective function and piecewise linear constraints. For this purpose, it is assumed that the functions are in the so-called Abs-Linear Form, a matrix-vector representation. Using this form, the domain space can be decomposed into polyhedra, so that the nonsmoothness of the piecewise linear functions can coincide with the edges of the polyhedra.
For the class of abs-linear functions, necessary and sufficient optimality conditions that can be verified in polynomial time are given for both the unconstrained and the constrained case.
For unconstrained piecewise linear optimization problems, Andrea Walther and Andreas Griewank already presented a solution algorithm called the Active Signature Method (ASM) in 2019. Building on this method and combining it with the idea of the Active Set Method to handle inequality constraints, a new algorithm called the Constrained Active Signature Method (CASM) for constrained problems emerges. Both algorithms explicitly exploit the piecewise linear structure of the functions by using the Abs-Linear Form. Part of the analysis of the algorithms is to show finite convergence to local minima of the respective problems as well as an efficient solution of the saddle point systems occurring in each iteration of the algorithms.
The numerical performance of CASM is illustrated by several examples. The test problems cover academic problems, including bi-level and linear complementarity problems, as well as application problems from gas network optimization and inventory problems.
|
Page generated in 0.0714 seconds