Spelling suggestions: "subject:"optimalitätsbedingungen"" "subject:"optimalitaetsbedingungen""
1 |
Fuzzy Bilevel OptimizationRuziyeva, Alina 26 February 2013 (has links) (PDF)
In the dissertation the solution approaches for different fuzzy optimization problems are presented. The single-level optimization problem with fuzzy objective is solved by its reformulation into a biobjective optimization problem. A special attention is given to the computation of the membership function of the fuzzy solution of the fuzzy optimization problem in the linear case. Necessary and sufficient optimality conditions of the the convex nonlinear fuzzy optimization problem are derived in differentiable and nondifferentiable cases. A fuzzy optimization problem with both fuzzy objectives and constraints is also investigated in the thesis in the linear case. These solution approaches are applied to fuzzy bilevel optimization problems.
In the case of bilevel optimization problem with fuzzy objective functions, two algorithms are presented and compared using an illustrative example. For the case of fuzzy linear bilevel optimization problem with both fuzzy objectives and constraints k-th best algorithm is adopted.
|
2 |
Eine spezielle Klasse von Zwei-Ebenen-OptimierungsaufgabenLohse, Sebastian 17 March 2011 (has links) (PDF)
In der Dissertation werden Zwei-Ebenen-Optimierungsaufgaben mit spezieller Struktur untersucht. Von Interesse sind hierbei für den sogenannten pessimistischen Lösungszugang Existenzresultate für Lösungen, die Eckpunkteigenschaft einer Lösung, eine Regularisierungstechnik, Optimalitätsbedingungen sowie für den linearen Fall ein Verfahren zur Bestimmung einer global pessimistischen Lösung. Beim optimistischen Lösungszugang wird zunächst eine Verallgemeinerung des Lösungsbegriffes angegeben. Anschließend finden sich Betrachtungen zur Komplexität des Problems, zu Optimalitätsbedingungen sowie ein Abstiegs- und Branch&Bound-Verfahren für den linearen Fall wieder. Den Abschluss der Arbeit bilden ein Anwendungsbeispiel und numerische Testrechnungen.
|
3 |
Mixed integer bilevel programming problemsMefo Kue, Floriane 13 November 2017 (has links) (PDF)
This thesis presents the mixed integer bilevel programming problems where some optimality conditions and solution algorithms are derived. Bilevel programming problems are optimization problems which are partly constrained by another optimization problem.
The theoretical part of this dissertation is mainly based on the investigation of optimality conditions of mixed integer bilevel program. Taking into account both approaches (optimistic and pessimistic) which have been developed in the literature to deal with this type of problem, we derive some conditions for the existence of solutions. After that, we are able to discuss local optimality conditions using tools of variational analysis for each different approach. Moreover, bilevel optimization problems with semidefinite programming in the lower level are considered in order to formulate more optimality conditions for the mixed integer bilevel program. We end the thesis by developing some algorithms based on the theory presented
|
4 |
Eine spezielle Klasse von Zwei-Ebenen-OptimierungsaufgabenLohse, Sebastian 25 February 2011 (has links)
In der Dissertation werden Zwei-Ebenen-Optimierungsaufgaben mit spezieller Struktur untersucht. Von Interesse sind hierbei für den sogenannten pessimistischen Lösungszugang Existenzresultate für Lösungen, die Eckpunkteigenschaft einer Lösung, eine Regularisierungstechnik, Optimalitätsbedingungen sowie für den linearen Fall ein Verfahren zur Bestimmung einer global pessimistischen Lösung. Beim optimistischen Lösungszugang wird zunächst eine Verallgemeinerung des Lösungsbegriffes angegeben. Anschließend finden sich Betrachtungen zur Komplexität des Problems, zu Optimalitätsbedingungen sowie ein Abstiegs- und Branch&Bound-Verfahren für den linearen Fall wieder. Den Abschluss der Arbeit bilden ein Anwendungsbeispiel und numerische Testrechnungen.
|
5 |
Bilevel programmingZemkoho, Alain B. 25 June 2012 (has links) (PDF)
We have considered the bilevel programming problem in the case where the lower-level problem admits more than one optimal solution. It is well-known in the literature that in such a situation, the problem is ill-posed from the view point of scalar objective optimization. Thus the optimistic and pessimistic approaches have been suggested earlier in the literature to deal with it in this case. In the thesis, we have developed a unified approach to derive necessary optimality conditions for both the optimistic and pessimistic bilevel programs, which is based on advanced tools from variational analysis. We have obtained various constraint qualifications and stationarity conditions depending on some constructive representations of the solution set-valued mapping of the follower’s problem. In the auxiliary developments, we have provided rules for the generalized differentiation and robust Lipschitzian properties for the lower-level solution setvalued map, which are of a fundamental interest for other areas of nonlinear and nonsmooth optimization.
Some of the results of the aforementioned theory have then been applied to derive stationarity conditions for some well-known transportation problems having the bilevel structure.
|
6 |
Bilevel programming: reformulations, regularity, and stationarityZemkoho, Alain B. 12 June 2012 (has links)
We have considered the bilevel programming problem in the case where the lower-level problem admits more than one optimal solution. It is well-known in the literature that in such a situation, the problem is ill-posed from the view point of scalar objective optimization. Thus the optimistic and pessimistic approaches have been suggested earlier in the literature to deal with it in this case. In the thesis, we have developed a unified approach to derive necessary optimality conditions for both the optimistic and pessimistic bilevel programs, which is based on advanced tools from variational analysis. We have obtained various constraint qualifications and stationarity conditions depending on some constructive representations of the solution set-valued mapping of the follower’s problem. In the auxiliary developments, we have provided rules for the generalized differentiation and robust Lipschitzian properties for the lower-level solution setvalued map, which are of a fundamental interest for other areas of nonlinear and nonsmooth optimization.
Some of the results of the aforementioned theory have then been applied to derive stationarity conditions for some well-known transportation problems having the bilevel structure.
|
7 |
Fuzzy Bilevel OptimizationRuziyeva, Alina 13 February 2013 (has links)
In the dissertation the solution approaches for different fuzzy optimization problems are presented. The single-level optimization problem with fuzzy objective is solved by its reformulation into a biobjective optimization problem. A special attention is given to the computation of the membership function of the fuzzy solution of the fuzzy optimization problem in the linear case. Necessary and sufficient optimality conditions of the the convex nonlinear fuzzy optimization problem are derived in differentiable and nondifferentiable cases. A fuzzy optimization problem with both fuzzy objectives and constraints is also investigated in the thesis in the linear case. These solution approaches are applied to fuzzy bilevel optimization problems.
In the case of bilevel optimization problem with fuzzy objective functions, two algorithms are presented and compared using an illustrative example. For the case of fuzzy linear bilevel optimization problem with both fuzzy objectives and constraints k-th best algorithm is adopted.:1 Introduction 1
1.1 Why optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Fuzziness as a concept . . . . . . . . . . . . . . . . . . . . .. . . . . . . 2
1.3 Bilevel problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Preliminaries 11
2.1 Fuzzy sets and fuzzy numbers . . . . . . . . . . . . . . . . . . . . . 11
2.2 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Fuzzy order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Fuzzy functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
3 Optimization problem with fuzzy objective 19
3.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Solution method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Local optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Existence of an optimal solution . . . . . . . . . . . . . . . . . . . . 25
4 Linear optimization with fuzzy objective 27
4.1 Main approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Optimality conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4 Membership function value . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4.1 Special case of triangular fuzzy numbers . . . . . . . . . . . . 36
4.4.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
5 Optimality conditions 47
5.1 Differentiable fuzzy optimization problem . . . . . . . . . . .. . . . 48
5.1.1 Basic notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.1.2 Necessary optimality conditions . . . . . . . . . . . . . . . . . . .. 49
5.1.3 Suffcient optimality conditions . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Nondifferentiable fuzzy optimization problem . . . . . . . . . . . . 51
5.2.1 Basic notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2.2 Necessary optimality conditions . . . . . . . . . . . . . . . . . . . 52
5.2.3 Suffcient optimality conditions . . . . . . . . . . . . . . . . . . . . . . 54
5.2.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6 Fuzzy linear optimization problem over fuzzy polytope 59
6.1 Basic notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.2 The fuzzy polytope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
6.3 Formulation and solution method . . . . . . . . . . . . . . . . . . .. . 65
6.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7 Bilevel optimization with fuzzy objectives 73
7.1 General formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.2 Solution approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74
7.3 Yager index approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.4 Algorithm I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.5 Membership function approach . . . . . . . . . . . . . . . . . . . . . . .78
7.6 Algorithm II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
7.7 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8 Linear fuzzy bilevel optimization (with fuzzy objectives and constraints) 87
8.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.2 Solution approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
8.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
8.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
9 Conclusions 95
Bibliography 97
|
8 |
Mixed integer bilevel programming problemsMefo Kue, Floriane 26 October 2017 (has links)
This thesis presents the mixed integer bilevel programming problems where some optimality conditions and solution algorithms are derived. Bilevel programming problems are optimization problems which are partly constrained by another optimization problem.
The theoretical part of this dissertation is mainly based on the investigation of optimality conditions of mixed integer bilevel program. Taking into account both approaches (optimistic and pessimistic) which have been developed in the literature to deal with this type of problem, we derive some conditions for the existence of solutions. After that, we are able to discuss local optimality conditions using tools of variational analysis for each different approach. Moreover, bilevel optimization problems with semidefinite programming in the lower level are considered in order to formulate more optimality conditions for the mixed integer bilevel program. We end the thesis by developing some algorithms based on the theory presented
|
9 |
Solving Constrained Piecewise Linear Optimization Problems by Exploiting the Abs-linear ApproachKreimeier, Timo 06 December 2023 (has links)
In dieser Arbeit wird ein Algorithmus zur Lösung von endlichdimensionalen Optimierungsproblemen mit stückweise linearer Zielfunktion und stückweise linearen Nebenbedingungen vorgestellt. Dabei wird angenommen, dass die Funktionen in der sogenannten Abs-Linear Form, einer Matrix-Vektor-Darstellung, vorliegen. Mit Hilfe dieser Form lässt sich der Urbildraum in Polyeder zerlegen, so dass die Nichtglattheiten der stückweise linearen Funktionen mit den Kanten der Polyeder zusammenfallen können.
Für die Klasse der abs-linearen Funktionen werden sowohl für den unbeschränkten als auch für den beschränkten Fall notwendige und hinreichende Optimalitätsbedingungen bewiesen, die in polynomialer Zeit verifiziert werden können.
Für unbeschränkte stückweise lineare Optimierungsprobleme haben Andrea Walther und Andreas Griewank bereits 2019 mit der Active Signature Method (ASM) einen Lösungsalgorithmus vorgestellt. Aufbauend auf dieser Methode und in Kombination mit der Idee der aktiven Mengen Strategie zur Behandlung von Ungleichungsnebenbedingungen entsteht ein neuer Algorithmus mit dem Namen Constrained Active Signature Method (CASM) für beschränkte Probleme. Beide Algorithmen nutzen die stückweise lineare Struktur der Funktionen explizit aus, indem sie die Abs-Linear Form verwenden. Teil der Analyse der Algorithmen ist der Nachweis der endlichen Konvergenz zu lokalen Minima der jeweiligen Probleme sowie die Betrachtung effizienter Berechnung von Lösungen der in jeder Iteration der Algorithmen auftretenden Sattelpunktsysteme.
Die numerische Performanz von CASM wird anhand verschiedener Beispiele demonstriert. Dazu gehören akademische Probleme, einschließlich bi-level und lineare Komplementaritätsprobleme, sowie Anwendungsprobleme aus der Gasnetzwerkoptimierung und dem Einzelhandel. / This thesis presents an algorithm for solving finite-dimensional optimization problems with a piecewise linear objective function and piecewise linear constraints. For this purpose, it is assumed that the functions are in the so-called Abs-Linear Form, a matrix-vector representation. Using this form, the domain space can be decomposed into polyhedra, so that the nonsmoothness of the piecewise linear functions can coincide with the edges of the polyhedra.
For the class of abs-linear functions, necessary and sufficient optimality conditions that can be verified in polynomial time are given for both the unconstrained and the constrained case.
For unconstrained piecewise linear optimization problems, Andrea Walther and Andreas Griewank already presented a solution algorithm called the Active Signature Method (ASM) in 2019. Building on this method and combining it with the idea of the Active Set Method to handle inequality constraints, a new algorithm called the Constrained Active Signature Method (CASM) for constrained problems emerges. Both algorithms explicitly exploit the piecewise linear structure of the functions by using the Abs-Linear Form. Part of the analysis of the algorithms is to show finite convergence to local minima of the respective problems as well as an efficient solution of the saddle point systems occurring in each iteration of the algorithms.
The numerical performance of CASM is illustrated by several examples. The test problems cover academic problems, including bi-level and linear complementarity problems, as well as application problems from gas network optimization and inventory problems.
|
Page generated in 0.5435 seconds