Spelling suggestions: "subject:"accretion."" "subject:"accretions.""
201 |
Time-series Observations of the High Mass X-Ray Binary 4U 2206+54 to Monitor Light VariationBugno, Jessica Lynn 09 March 2011 (has links) (PDF)
The high mass X-ray binary 4U 2206+54 has been a very controversial system due to variability in spectral data as well as photometric data. We, at Brigham Young University, have been observing this system in multiple filters with several telescopes. This thesis presents our methods of observations, reductions, and results. It also compares what we have been detecting to other groups looking at the same target in different wavelengths. Furthermore, this thesis discusses some of the peculiarities of 4U 2206+54 and possible theories to explain these phenomena. Based on our photometric observations for the past three years, we believe the period of 4U 2206+54 is 25.1 days. Furthermore, spectral data show an unusual double-peaked Hα feature. We believe the primary star BD +53°2790 is a single star, and that the system is surrounded by a gas and dust shell.
|
202 |
Superradiant axion clouds and their interaction with astrophysical plasma / Superstrålningsförstärkta axionmoln och deras växelverkan med astrofysikalisk plasmaEngstedt, Erik January 2021 (has links)
Axions are one of the best-motivated particles beyond the standard model of particle physics and a promising candidate for dark matter. Through the superradiant instability, axions can extract a significant amount of rotational energy from spinning black holes resulting in dense axion clouds. These axion clouds can imprint themselves on the spin of the black hole and even emit detectable gravitational waves, making them very potent tools in the search for axions. The considerable number of axions present in these clouds can also compensate for the weak coupling between the axion and the standard model particles. However, the interaction between the cloud and the astrophysical plasma that the black hole accretes is often assumed to be negligible. In this thesis, we examine this assumption by studying the interaction between the astrophysical plasma and the axion cloud to determine if it can cause any significant effects. We find no new gravitational signatures and can conclude that the interaction is not effective enough to halt the evolution of the cloud. Therefore, the main focus of this work is the emitted low-frequency photons that the axions convert into through the interaction. We find that the emission from systems with typical accretion rates can reach up to 10^14 W and is most efficient around fast-spinning stellar black holes that accrete spherically without an accretion disk. However, we conclude that most of this emission will quickly be reabsorbed into the plasma and not cause any detectable signals. We also study resonant conversion of axions, which can occur when the plasma frequency is comparable to the axion mass. We find that the low accretion rates that enable this are reachable around isolated stellar-mass black holes that travel rapidly through low-density regions of space. In these systems, the luminosity can reach 10^25 W, and possibly even higher if we include stimulation effects. We can, therefore, conclude that a population of fast-traveling isolated black holes can pose a new tool in the search for axions. / Axioner är en av de bäst motiverade partiklarna bortom standardmodellen för partikelfysik och en lovande kandidat för mörk materia. Genom superstrålning kan axioner extrahera en signifikant mängd rotationsenergi från svarta hål vilket kan resultera i täta axionmoln. Dessa axionmoln kan ge avtryck genom deras påverkan på spinnet hos svarta hål och till och med avge detekterbara gravitationsvågor. Detta gör axionmoln till kraftfulla verktyg i sökandet efter axioner. Den stora mängd axioner som dessa moln består av kan också kompensera för den svaga växelverkan mellan axionerna och partiklarna från standardmodellen. Växelverkan mellan molnet och den astrofysikaliska plasmat som det svarta hålet ackumulerar från omgivningen antas ändå ofta vara försumbar. I denna rapport undersöker vi detta antagande genom att studera växelverkan mellan den astrofysikaliska plasmat och axionmolnet för att avgöra om den kan orsaka några observerbara effekter. Vi finner inga nya gravitationella effekter och kan dra slutsatsen att växelverkan inte är tillräckligt effektiv för att påverka utvecklingen av axionmolnet. Därför är huvudfokus i detta arbete utstrålningen av de fotoner som resulterar från växelverkan. Vi finner att emissionen från system med typiska ackretionshastigheter kan nå upp till 10^14 W och är mest effektiv kring svarta hål med låg massa och högt spinn som ackumulerar sfäriskt utan att bilda en ackretionsskiva. Vi drar dock slutsatsen att det mesta av denna emission snabbt kommer att återabsorberas i plasmat och inte orsaka några detekterbara signaler. Vi studerar även konvertering av axioner via resonans, vilket kan inträffa när plasmafrekvensen är jämförbar med massan hos axionerna. Vi finner att de låga ackretionshastigheterna som möjliggör detta kan nås runt isolerade svarta hål som färdas snabbt genom delar av rymden med låg omgivande densitet. I dessa system kan luminositieten nå 10^25 W, och möjligen ännu högre om vi inkluderar stimuleringseffekter. Vi kan därför dra slutsatsen att en population av isolerade svarta hål med hög hastighet kan potentiellt användas i sökandet efter axioner.
|
203 |
Metagenomic And Metatranscriptomic Analyses Of Lake Vostok Accretion IceShtarkman, Yury M. 30 September 2015 (has links)
No description available.
|
204 |
The cosmological X-ray evolution of stars, AGN, and galaxiesWatson, Casey Richard 14 July 2006 (has links)
No description available.
|
205 |
Planet Traps in Protoplanetary Disks and the Formation and Evolution of Planetary SystemsHasegawa, Yasuhiro 10 1900 (has links)
<p>One of the most fundamental problems in theories of planet formation in protoplanetary disks is planetary migration that arises from resonant, tidal interactions of forming planets with the natal disks. This rapid inward migration, also known as type I migration, leads to the well-known problem that its timescale is about two orders of magnitude shorter than the typical disk lifetime, so that (proto)planets plunge into the host stars within the disk lifetime. This provides a huge hurdle for understanding the statistical properties of observed extra solar planets that now amount to more than 700.</p> <p>In this thesis, we focus on one of the most general properties of protoplanetary disks - inhomogeneities. A large amount of theoretical and observational work currently suggests that protoplanetary disks are most likely to possess several kinds of inhomogeneities. Planetary migration is highly sensitive to the disk properties such as the surface density and temperature of disks, and the sensitivity leads to the formation of trapping sites for rapid type I migration at disk inhomogeneities. These local sites capturing planets undergoing migration are referred to as planet traps. We perform both analytical and numerical studies for exploring formation mechanisms of planet traps at disk inhomogeneities and their consequences for the formation and evolution of planetary systems. We focus on three kinds of the disk inhomogeneities: dead zones, ice lines, and transitions of heat sources in protoplanetary disks we refer to as heat transitions. Dead zones are an inevitable consequence of disk turbulence originating from magnetorotational instabilities (MRIs) that take place in (partially) ionized disks threaded by weak magnetic fields. One of the fundamental properties of the dead zone is a low level of turbulence there, which is the outcome of the high density, preventing the region from being ionized due to X-rays from the central stars and cosmic rays. Ice lines are formed due to low disk temperatures which lead to condensation of specific molecules there. Heat transitions arise as a consequence of the switching of the dominant heating process from viscous heating to stellar irradiation as the distance to the host stars increases.</p> <p>We summarize our major findings. 1) rapid dust settling arising in dead zones leaves a dusty wall at the outer edge of the dead zones beyond which the disks are quite turbulent, so that dust is fully mixed with the gas. Efficient heating of the wall by stellar irradiation and the subsequent backward heating of the dead zones by the wall result in a positive temperature gradient in the dead zones. This inversion in the temperature profiles leads to outward migration there. 2) Any protoplanetary disk is likely to possess up to three types of planet traps that are specified by characteristic disk radii (dead zone, ice line and heat transition traps). Disk evolution, driven by disk viscosity, lowers both the accretion rate and surface density of gas and moves traps inward at different rates. This suggests that the interactions of (proto)planets captured at different traps play the dominant role in constructing planetary system architectures. Furthermore, the distribution of planet traps depends largely on stellar masses and accretion rates, so that they are one of the principle parameters for regulating the (initial) scale of planetary systems. 3) Both multiplicity and mobility of planet traps are crucial for understanding the statistical properties of observed extra solar planets. For instance, the mass-period relation - observational manifestation that planetary mass is an increasing function of orbital periods - can be understood by constructing and following evolutionary tracks of accreting planets in planet traps. These three contribution are new results in the field.</p> / Doctor of Philosophy (PhD)
|
206 |
Structures magnétiques d'accrétion-éjectionFerreira, Jonathan 30 September 1994 (has links) (PDF)
Dans les noyaux actifs de galaxies comme autour des étoiles jeunes en formation, il est naturel de croire en l'existence d'un lien entre l'accrétion de matière sur un objet central massif et les jets collimatés observés. L'objet de cette thèse est l'étude de structures magnétisées, dans lesquelles accrétion et éjection sont deux processus interdépendants. Le mécanisme physique à la base de ces deux processus est ainsi élucidé, en résolvant l'ensemble complet des équations magnétohydrodynamiques décrivant ces structures. Un disque d'accrétion résistif est traversé par des lignes de champ magnétique ouvertes, torsadées par sa rotation. Ces lignes freinent le disque et lui extraient moment cinétique et énergie mécanique. Une transition naturelle est obtenue entre le disque résistif dense et un jet idéal dilué, super magnétosonique lent. L'existence de telles structures stationnaires n'est pas fortuite mais découle de la saturation d'instabilités du disque magnétisé, donnant lieu à des coefficients de transport anormaux. La structure est complexe, avec équipartition entre l'énergie magnétique et thermique ainsi que des composantes du champ magnétique de grandeur comparable. Les signatures observationnelles des disques sont décrites, ainsi que le bilan global d'énergie et les caractéristiques des jets. Les ordres de grandeurs requis par de telles structures sont compatibles avec les observations.
|
207 |
Un modèle non-thermique de l'émission UV-X des galaxies de Seyfert : théories et contraintes observationnellesPetrucci, Pierre-Olivier 15 October 1998 (has links) (PDF)
L'observation, dans le spectre des galaxies de Seyfert, d'une coupure exponentielle aux alentours de quelques centaines de keV et la non-détection d'une forte raie d'annihilation semblent favoriser les modèles thermiques. Néanmoins, je montre, à travers cette étude, qu'un modèle non-thermique peut aussi être à l'origine de l'émission haute énergie de ces objets. Ce modèle suppose la présence d'une source de particules relativistes placée à quelques rayons de Schwarzschild au-dessus d'un disque d'accrétion. Cette source aurait pour origine le choc terminal d'un jet avorté. Le rayonnement X qu'elle libère est produit par diffusion Compton Inverse des photons UV émis par le disque sur les particules relativistes. Inversement, les photons UV proviennent du rayonnement thermique du disque chauffé par la source X. La géométrie de ce modèle impose une forte anisotropie du rayonnement UV perçu par la source X et donne, en retour, une émission Compton Inverse fortement anisotrope. L'équilibre radiatif entre la source et le disque permet de remonter aux principales caractéristiques de ce système. L'ajout de composantes en réflexion permet, ensuite, d'ajuster le spectre de différents objets. La forte anisotropie de l'émission X nécessite alors des angles d'inclinaison bien supérieurs au cas d'une illumination isotrope standard. Finalement, l'étude cinétique du choc donnant naissance à la source X, et prenant en compte les processus de Fermi du premier et du second ordre ainsi que les pertes radiatives, permet de définir plus précisément la source de haute énergie. Ces différents travaux théoriques sont complétés par l'observation optique d'une vingtaine de galaxies de Seyfert, à la recherche de microvariabilités. Les limites supérieures obtenues donnent, dans le cadre de ce modèle non-thermique, de nouvelles contraintes sur les différents paramètres caractérisant la région centrale de ces objets.
|
208 |
Giant planet formation and migrationAyliffe, Benjamin A. January 2009 (has links)
This thesis describes efforts to improve the realism of numerical models of giant planet formation and migration in an attempt to better understand these processes. A new approach has been taken to the modelling of accretion, designed to mimic reality by allowing gas to accumulate upon a protoplanetary surface. Implementing this treatment in three-dimensional self-gravity radiation hydrodynamics calculations provides an excellent model for planet growth, allowing an exploration of the factors that affect accretion. Moreover, these calculations have also been extended to investigate the migration of protoplanets through their parent discs as they grow. When focusing on the growth of non-migrating protoplanets, the models are performed using small sections of disc, enabling excellent resolution right down to the core; gas structures and flow can be resolved on scales from ~ 10^4 to 10^11 metres. Using radiative transfer, these models reveal the importance of opacity in determining the accretion rates. For the low mass protoplanets, equivalent in mass to a giant planet core (~ 10 M⊕), the accretion rates were found to increase by up to an order of magnitude for a factor of 100 reduction in the grain opacity of the parent circumstellar disc. However, even these low opacities lead to growth rates that are an order of magnitude slower than those obtained in locally-isothermal conditions. For high mass protoplanets (>~ 100M⊕), the accretion rates show very little dependence upon opacity. Nevertheless, the rates obtained using radiative transfer are still lower than those obtained in locally-isothermal models by a factor of ~2, due to the release of accretion energy as heat. Only high mass protoplanets are found to be capable of developing circumplanetary discs, and this ability is dependent upon the opacity, as are the scaleheights of such discs. However, their radial extents were found to be independent of the opacity and the protoplanet mass, all reaching ≈ RH/3, inline with analytic predictions. Migration is investigated using global models, ensuring a self-consistently evolved disc. Using locally-isothermal calculations, it was found that the capture radius of an accreting sink particle, used to model a protoplanet without a surface, must be small (<< RH) to yield migration timescales consistent with linear theory of Type I migration. In the low mass regime of Type I migration, accreting sinks with such small radii yield timescales consistent with those models in which a protoplanetary surface is used. However, for high mass protoplanets, undergoing Type II migration, the surface treatment leads to faster rates of migration, indicating the importance of a realistic accretion model. Using radiative transfer, with high opacities, leads to a factor of ~ 3 increase in the migration timescale of the lowest mass protoplanets, improving their chances of survival. As suitable gas giant progenitors, their survival is key to understanding the growth of giant planets. An unexpected result of the radiative transfer was a reduction in the migration timescale of high mass planets. This appears to be a result of the less thoroughly evacuated gaps created by planets in non-locally-isothermal discs, which affects the corotation torque.
|
209 |
Núcleos de galáxias ativos: propriedades em escalas de parsec e kilo-parsec / Active galactic nuclei: properties at parsec and kilo-parsec scalesTeixeira, Danilo Morales 27 January 2015 (has links)
Neste trabalho estudamos a dinâmica de discos torcidos finos e espessos para compreender melhor a propagação da deformação nestes discos. No caso dos discos finos, estudamos a física do efeito Bardeen-Petterson e aplicamos este modelo para explicar o jato em escalas de parsec e kilo-parsec da galáxia NGC 1275. Encotramos que o efeito Bardeen-Petterson reproduziu muito bem a forma do jato e com isto derivamos os parâmetros do disco como raio, valores das viscosidades azimutal e vertical, lei de potência da densidade superficial e spin do buraco negro. Para uma melhor compreensão da física destes discos, realizamos simulações GRMHD de discos moderadamente finos tanto planos como inclinados para estudar a evolução do ângulo de inclinação entre os momentos angular do buraco negro e do disco de acresção assim como o ângulo de torção que está associado com a precessão do disco. Encontramos que quando o disco de acresção e o buraco negro rotacionam no mesmo sentido, o ângulo de inclinação entre os momentos angular apresentou um comportamento oscilatório na parte interna do disco e permaneceu constante na parte externa em acordo com as previsões teóricas. Já quando o buraco negro rotacina no sentido oposto ao disco de acresção, encontramos pela primeira vez numa simulação GRMHD evidências de alinhamento, ocorrendo um alinhamento de 10\\% do angulo entre os momentos angulares do disco e buraco negro. Além disso, comprovamos pela primeira vez numa simulação GRMHD a não isotropia do stress. Utilizando um modelo semi-analítico, comparamos os resultados de nossas simulações com este modelo, utilizando os dados da simulações de disco plano como entrada e obitivemos os mesmos comportamentos das simulações tanto no caso prógrado quanto no caso retrógrado mostrando que o alinhamento é devido ao regime onda. / In this work we studied the dynamics of twisted thin and thick disks to better understand how the warp propagates in these discs. In the case of thin discs, we studied the physics of the Bardeen-Petterson effect and we applied this model to explain the shape of the jet in both parsec and kilo-parsec scales of the galaxy NGC 1275. We found that the Bardeen-Petterson effect could explain very well the shape of the jet and with that we derived the disc parameters such as its radius, the values of the kinematic azimutal and vertical viscosities, the power-law of the surface density and the spin of the black hole. To better understand the physics of such discs, we have performed GRMHD simulations of moderatelly thin tilted disks to study the evolution of the tilt angle between the angular momentum of the accretion disk and black hole and also the twist angle which is associated with the precession of the disc. We found that when the accretion disc and the black hole are rotating in the same direction, the tilt angle showed an oscillatory behavior in the inner parts of the disk while in the outer parts it remained constant in agreement with the theorical modelos. However, when both rotate in the opposite direction, we found for the very first time in a GRMHD simulation, evidences of alignment of 10\\% of the tilt angle. Besides that, we prove for the first time in a GRMHD simulation that the stress is far from being isotropic. Using a semi-analitic model, we compared the results of our simulations with this model, using the datas of the untilted simulations as inputs and we found the same behaviors found in the simulations even in prograde case as in the retrograde case showing that the alignment is due to bending waves.
|
210 |
The Formation of High-Mass Stars: from High-Mass Clumps to Accretion Discs and Molecular Outflows / A Formação de Estrelas de Alta Massa: dos Glóbulos de Alta Massa aos Discos de Acreção e Jatos MolecularesNavarete, Felipe Donizeti Teston 20 February 2018 (has links)
High-mass stars play a significant role in the evolution of the Universe and the process that leads to the formation of such objects is still an open question in Astrophysics. The details of the structures connected to the central sources, such as the circumstellar disks and the morphology of the jets at their launching points, still lack of observational evidence. In this thesis, the high-mass star forming process is investigated in terms of the evolution of high-mass clumps selected from the ATLASGAL survey based on their CO emission in the sub-millimetre. While single-dish sub-millimetre observations provide a large-scale view of the high-mass star formation process, higher angular resolution observations are required to disentangle the details of the protostars within the clumps. For this, three-dimensional infrared spectroscopy was obtained for a group of RMS sources to characterise the circumstellar environment of high-mass YSOs in linear scales of ~100-1000 AU. The ATLASGAL TOP100 sample offers a unique opportunity to analyse a statistically complete sample of high-mass clumps at different evolutionary stages. APEX data of three rotational J transitions of the CO (the CO(4-3), CO(6-5) and CO(7-6)) were used to characterise the properties of their warm gas (~155 K) content and to derive the relations between the CO and the clump properties. The CO line luminosities were derived and the analysis indicated that the CO emission increases as a function of the evolutionary stage of the clumps (from infrared-weak to HII regions) and as a function of the bolometric luminosity and mass of the sources. The comparison of the TOP100 with low-mass objects observed in the CO(6-5) and CO(7-6), together with CO(10-9) data observed for a complementary sample of objects indicated that the dependency of the CO luminosity with the bolometric luminosity of the sources gets steeper towards higher-J transitions. Although the CO luminosity of more luminous clumps are systematically larger than the values obtained for the less luminous sources, the individual analysis of each subsample suggests a similar dependency of the CO luminosity versus the bolometric luminosity for each luminosity regime. Finally, the presence of high-velocity CO emission observed for the TOP100 suggests that ~85% of the sources are driving molecular outflows. The selection of isolated high-mass objects undergoing mass accretion is fundamental to investigate if these objects are formed through an accretion disc or if they are formed by merging of low-mass YSOs. The near-infrared window provides one of the best opportunities to investigate the interior of the sub-mm clumps and study in details their individual members. Thanks to the relatively high-resolution obtained in the K-band and the moderate reddening effects in the K-band, a sample of eight (8) HMYSOs exhibiting large-scale H2 outflows were selected to follow-up K-band spectroscopic observations using the NIFS spectrometer (Gemini North). All sources exhibit extended continuum emission and exhibit atomic and molecular transitions typical of embedded objects, such as Brackett-gama, H2 and the CO lines. The H2 lines are tracing the launching point of the large-scale jets in scales of ~100 AU in five of eight sources (63%). The identification of jets at such small scales indicates that these objects are still undergoing mass accretion. The Brackett-gama emission probes the ionised gas around the HMYSOs. The analysis of the Brackett-gama spectro-astrometry at sub-pixel scales suggests that the line arises from the cavity of the outflows or from rotating structures perpendicular to the H2 jets (i.e., disc). Five sources also exhibit CO emission features (63%), and three HMYSOs display CO absorption features (38%), indicating that they are likely associated with circumstellar discs. By further investigating the kinematics of the spatially resolved CO absorption features, the Keplerian mass of three sources was estimated in 5±3, 8±5 and 30±10 solar masses. These results support that high-mass stars are formed through discs, similarly as observed towards low-mass stars. The comparison between the collimation degree of the molecular jets or outflows detected in the NIFS data with their large-scale counterparts indicate that these structures present a relatively wide range of collimation degrees. / Estrelas de alta massa têm grande impacto na evolução do Universo e o processo de formação destes objetos ainda é um problema em aberto na Astrofísica. Os detalhes das estruturas associadas às regiões mais próximas dos objetos centrais, tais como os discos circunstelares e a morfologia dos jatos próximos à base de lançamento, ainda não foram estudados em detalhe e carecem de evidências observacionais. Esta tese apresenta um estudo da formação de estrelas de alta massa em termos da evolução de glóbulos de alta massa (clumps), selecionados a partir do levantamento ATLASGAL, a partir de observações da molécula do CO na faixa espectral do sub-milimétrico. Enquanto observações \"single-dish\" no sub-milimétrico possibilitam o estudo em larga escala do processo de formação de estrelas de alta massa, observações com maior resolução angular são necessárias para investigar os detalhes das protoestrelas no interior dos glóbulos. Para isso, espectroscopia tri-dimensional no infra-vermelho próximo foi obtida para um grupo de fontes RMS para caracterizar o meio circunstelar de objetos estelares jovens e de alta massa (HMYSOs) em escalas lineares de ~100-1000 UA. A amostra TOP100 oferece uma oportunidade ímpar de analisar um conjunto estatisticamente completo de glóbulos de alta massa em diversas fases evolutivas. Observações realizadas com o radiotelescópio APEX de três transições rotacionais da molécula do CO (CO(4-3), CO(6-5) e CO(7-6)) foram utilizadas para estudar as propriedades do gás morno (~155 K) associado aos glóbulos, e obter as relações entre a emissão do CO e as propriedades físicas dos glóbulos. A luminosidade das diferentes transições do CO foi obtida e sua análise mostrou que a emissão do gás aumenta em função do estágio evolutivo dos glóbulos (de glóbulos com emissão fraca no infravermelho longínquo a regiões HII) e em função da luminosidade bolométrica e massa dos glóbulos. A comparação entre os glóbulos de alta massa presentes na amostra TOP100 com fontes de menor massa observadas nas transições do CO(6-5) e CO(7-6), juntamente com a análise de uma amostra complementar de fontes observadas na transição do CO(10-9) mostrou que a dependência da luminosidade do CO com a luminosidade bolométrica aumenta em função do número quântico J associado à transição do CO. Este estudo também mostrou que as relações entre a luminosidade do CO e dos clumps são dominadas pelas fontes de alta luminosidade presentes na amostra analisada. A análise individual de fontes de baixa e alta luminosidade sugerem que a dependência entreas luminosidades do CO e bolométrica é a mesma em ambos os regimes de luminosidade, embora as luminosidades do CO sejam sistematicamente maiores para os glóbulos de alta massa. Por fim, a análise da emissão do CO em altas-velocidades mostrou que ~85% dos glóbulos presentes na amostra TOP100 apresentam jatos moleculares. A seleção de objetos de alta massa isolados em estágio de acreção ativa é crucial para decidir se ela ocorre através de um disco de acreção e/ou via fusão de YSOs de menor massa. Para isso, observações no infra-vermelho próximo são ideais para se investigar o conteúdo dos glóbulos sub-milimétricos e resolver seus membros individuais. Devido a alta resolução espacial na banda K e a extinção interestelar moderada nesta faixa espectral, um conjunto de oito (8) HMYSOs associados a jatos em H2 em larga-escala foram selecionados para observações espectroscópicas na banda K utilizando o espectrômetro NIFS no Gemini Norte. Todos os objetos investigados com o NIFS apresentam emissão extendida no contínuo, bem como nas linhas espectrais típicas de fontes jovens, tais como o Brackett-gama, transições do H2 e a emissão nas bandas moleculares do CO. A emissão em H2 está associada aos jatos moleculares em escalas de ~100 UA em cinco das oito fontes (63%). A indentificação de jatos moleculares em escalas tão próximas ao objeto central indica que o processo de acreção de massa ainda está ativo nestes objetos. A emissão do Brackett-gama provém do gás ionizado nas regiões mais próximas das fontes centrais ou regiões de choque próximas aos jatos. A espectro-astrometria da linha do Brackett-gama em escalas de sub-píxeis, indica que a emissão do gás ocorre nas cavidades dos jatos moleculares ou delineiam estruturas alinhadas perpendicularmente aos jatos, tais como os discos de acreção. Cinco fontes também apresentam emissão nas bandas do CO (63%), e três HMYSOs apresentam linhas do CO em absorção (38%), indicando que estes objetos apresentam discos de acreção. A massa total do sistema \"disco e protoestrela\" foi determinada a partir do estudo da cinemática das linhas de absorção do CO, detectadas em três objetos. A partir de modelos de rotação Kepleriana, as massas das fontes foram estimadas em 5±3, 8±5 e 30±10 massas solares. Os resultados obtidos a partir da espectroscopia tri-dimensional no infravermelho corroboram a hipótese de que estrelas de alta massa são formadas a partir de acreção por discos, de maneira similar ao observado para estrelas de baixa massa. A comparação entre a morfologia dos jatos moleculares identificados nos campos do NIFS e das correspondentes contrapartidas em escalas maiores indicam que os jatos apresentam diferentes graus de colimação ao longo de suas estruturas, explicadas pela multiplicidade de fontes nas proximidades da base de lançamento dos jatos ou efeitos de precessão no objeto central.
|
Page generated in 0.0501 seconds