• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 147
  • 16
  • 15
  • 10
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 249
  • 74
  • 71
  • 51
  • 47
  • 42
  • 36
  • 35
  • 31
  • 30
  • 24
  • 23
  • 21
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Factors affecting Wilson's Plover (Charadrius wilsonia) demography and habitat use at Onslow Beach, Marine Corps Base Camp Lejeune, North Carolina

Ray, Kacy Lyn 22 March 2011 (has links)
The Wilson’s Plover (Charadrius wilsonia) is a species of concern in most southeastern U.S. coastal states, where it breeds and winters. The U.S. Shorebird Conservation Plan listed this species as a Species of High Concern (Prioritization Category 4), and the U.S. Fish and Wildlife Service has designated it as a Bird of Conservation Concern (BCC). Despite its conservation status, Wilson’s Plover population trends are poorly understood and little research has been conducted examining habitat factors affecting this species’ breeding and foraging ecology. I collected Wilson’s Plover demographic data and explored which habitat characteristics influenced breeding success and foraging site selection among three coastal habitat types (i.e. fiddler crab (Uca spp.) mud flats, beach front, and interdune sand flats) at Onslow Beach, Marine Corps Base Camp Lejeune, North Carolina, 2008-2009. I observed little difference between years in nest success (≥ 1 egg hatched), failure, and overall nest survival. The majority of nest failures were caused by mammalian predators. For those nests that hatched successfully, greater proportions were located in clumped vegetation than on bare ground or sparsely vegetated areas. In-season chick survival for both years was higher for nests that hatched earlier in the season, and for nests farthest from the broods’ final foraging territory. Productivity estimates (chicks fledged per breeding pair) were not significantly different between years (0.88 ± 0.26 fledged/pair in 2008, 1.00 ± 0.25 fledged/pair in 2009) despite a shift in foraging behavior, possibly related to habitat alterations and availability in 2009. My findings indicate that Wilson’s Plover adults and broods were flexible in establishing final foraging territories; in 2008 all final brood foraging territories were on fiddler flats while in 2009, final foraging territories were sometimes split between fiddler flats, beach front, and interdune sand flats. For those Wilson’s Plovers establishing territories on fiddler flats, area of the flat was the most important feature explaining use versus non-use of a particular flat; area ≥ 1250 m² was preferred. Close proximity to water and vegetative cover were also important habitat features in foraging site selection on fiddler crab mud flats, and in all habitat types combined. My findings will directly contribute to population and habitat research goals outlined in the U.S. Shorebird Plan and will supplement limited data about foraging and habitat use related to Wilson’s Plover breeding ecology. / Master of Science
232

Indirect Imaging of Cataclysmic Variable Stars / Indirekte Abbildung kataklysmischer veränderlicher Sterne

Kube, Jens 17 June 2002 (has links)
No description available.
233

Formation de la Terre et de Mars : étude expérimentale et numérique / Formation of the Earth and Mars : an experimental and numerical study

Clesi, Vincent 18 November 2016 (has links)
La formation des noyaux planétaires métalliques est un évènement majeur pour l’évolution des propriétés physico-chimiques des planètes telluriques telles que nous les connaissons aujourd’hui. En effet, l’abondance des éléments sidérophiles (i.e. qui ont des affinités chimiques avec les phases métalliques) dans les manteaux planétaires s’explique par les conditions dans lesquelles se sont séparées les phases métalliques et silicatées. Au premier rang de ces conditions se trouvent la pression, la température et la fugacité d’oxygène. La distribution des éléments dans le noyau et le manteau ne peut en effet s’expliquer que pour un équilibre obtenu dans un océan magmatique profond, donc à haute pression et haute température ; et dans des conditions d’oxydo-réduction variables, dont l’évolution la plus probable est de passer d’un état réduit à un état oxydé. Un autre paramètre important est la présence ou non d’eau dans l’océan magmatique primitif. En effet, nous disposons de plus en plus d’arguments permettant d’expliquer l’arrivée des éléments volatils, notamment l’eau, pendant l’accrétion, à partir de briques élémentaires qui contiennent ces éléments. Si l’eau est présente tout au long de l’accrétion, et donc pendant la ségrégation du noyau, elle peut donc avoir un effet sur ce dernier phénomène. Dans cette hypothèse, nous avons mené des expériences de haute pression et haute température permettant de modéliser expérimentalement la formation du noyau en condition hydratée. Ces expériences nous ont permis de montrer que la présence d’eau a un effet sur l’évolution de l’état d’oxydation des manteaux planétaires. Cette évolution oxydo-réductive nous a permis de contraindre des modèles d’accrétion basés sur un mélange de chondrites EH et CI, qui confirment des modèles construits à partir de données isotopiques. Ces modèles nous ont permis de contraindre les concentrations primitives maximum en eau probables sur Terre (1,2-1,8 % pds.) et sur Mars (2,5-3,5 % pds.). D’autre part, nos avons mis en évidence le caractère lithophile (i.e. qui a des affinités chimiques avec les phases silicatées) de l’hydrogène à haute pression, a contrario de plusieurs études précédentes. De ce fait, la différence entre les concentrations initiales élevées en eau que nous obtenons dans nos modèles d’accrétion et les concentrations en eau estimées sur Terre et sur Mars actuellement (2000 ppm et 200 ppm, respectivement) ne peut pas être expliquée par un réservoir d’hydrogène dans le noyau. Enfin, pour améliorer les modèles de formation du noyau, nous avons mis en évidence, par des modèles numériques, l’effet important de la viscosité de l’océan magmatique sur le taux d’équilibre entre noyaux et manteaux des planètes telluriques. Cela nous mène à ré-évaluer les modèles de formation des planètes telluriques basés sur des résultats expérimentaux à l’équilibre, notamment l’extension maximale de l’océan magmatique. L’évolution de la viscosité de l’océan magmatique a donc un impact important sur la composition finale des noyaux planétaires (par exemple les teneurs en soufre, oxygène ou silicium des noyaux terrestres et martiens). / The formation of the metallic planetary cores is a major event regarding to the evolution of physical and chemical properties of the telluric planets as we know it today. Indeed, the siderophile elements (i.e. which has affinities with metallic phases) abundances in planetary mantles is explained by the conditions of core-mantle segregation. Among these conditions, pressure, temperature and oxygen fugacity are the main ones controlling distribution of the elements between mantle and core. This distribution can only be explained by an equilibrium between metal and silicate obtained in a deep magma ocean, which implies high pressure and high temperature of equilibrium. Moreover, the oxygen fugacity must have varied during core-mantle segregation, in a reduced-to-oxidized path most probably. Another important parameter is whether or not water is present in the primordial magma ocean. Indeed, we now have more and more lines of evidences showing that the volatile elements, especially water, arrived during accretion and therefore during the core-mantle segregation, which means that water can have an effect on the latter phenomenon. Considering this hypothesis, we performed several high pressure-high temperature experiments which allowed us to model the formation of the core under hydrous conditions. These experiments demonstrated that water has a significant effect on the redox state evolution of planetary mantles. We use this redox evolution to constrain models of planetary accretions, based on a mix of EH and CI chondrites, showing a good agreement with models based on isotopic data. The output of these models is the maximum initial concentration in water on the Earth (1.2 -1.8 %wt) and on Mars (2.5-3.5 %wt). Furthermore, these experiments showed a lithophile behavior (i.e. which has affinities with silicated phases) of hydrogen at high pressures, contrary to previous studies. Therefore, the difference between high initial concentrations in water yielded by our accretion models and the estimated actual concentrations on the Earth and Mars (2000 ppm and 200 ppm, respectively) cannot be explained by a hydrogen reservoir in the core. Finally, to improve the models of core-mantle segregation, we showed by numerical simulations the important effect of the magma ocean viscosity on the equilibrium between planetary mantles and cores. it lead us to reevaluate the models of accretion based on experimental data, especially the maximum extent of magma oceans. The evolution of the magma ocean viscosity has therefore significant implications on the final composition of planetary cores (for instance on the sulfur, oxygen and silicon content of the Earth’s and Mars’ core).
234

A Study of Slow Modes in Keplerian Discs

Gulati, Mamta January 2014 (has links) (PDF)
A rich variety of discs are found orbiting massive bodies in the universe. These could be accretion discs composed of gas around stellar mass compact objects fueling micro-quasar activity; protoplanetary discs, mainly composed of dust and gas, are the progenitors for planet formation; accretion discs composed of stars and gas around super-massive black holes at the centers of galaxies fueling the active galactic nuclei activity; discs in spiral galaxies; and many more. Structural and kinematic properties of these discs in several astrophysical systems are correlated to the global properties; for example, over a sample of thousands of galaxies, a correlation has been found between lopsidedness, black hole growth, and the presence of young stellar populations in the centers of galaxies. Galaxy formation and evolution of the central BH are some of the contexts in which such correlations become important. Studying the dynamics of these discs helps to explain their structural properties and is thus of paramount importance. In most astrophysical discs(a notable exception being the stellar discs in spiral galaxies),the dynamics are usually dominated by the gravity of the central object, and is thus nearly Keplerian. However, there is a small contribution to the total force experienced by the disc due to the disc material. Discs mentioned above differ from each other due to different underlying force that dominates the non-Keplerian dynamics of these discs. Two important numbers which are useful in describing physical properties of any disc structure in astrophysics are: (1) Mach number M , and(2) Toomre Q parameter. If thermal pressure gradient and/or random motion dominate the non-Keplerian forces, then M « Q, and in the case when the self-gravity of the disc is more important then Particles constituting the disc orbit under Keplerian potential due to central object, plus the small contribution from the non-Keplerian potential due to disc self-gravity, or the thermal pressure gradient. For a Keplerian potential, the radial and azimuthal frequencies are in 1 : 1 ratio w.r.t. each other and hence there is no precession in the orbits. In case of nearly Keplerian potential(when non-Keplerian contributions are small), the orbits precess at a rate proportional to the non-Keplerian forces. It is this non-zero but small precession that allows the existence of modes whose frequencies are proportional to the precession rate. These modes are referred to as slow modes (Tremaine 2001). Such modes are likely to be the only large-scale or long-wavelength modes. The damping they suffer due to viscosity, collisions, Landau damping, or other dissipative processes is also relatively less. Hence, these modes can dominate the overall appearance of discs. In this thesis we intend to study slow modes for nearly Keplerian discs. Slow modes innear-Kepleriandiscscantobethereasonforvariousnon-axisymmetricfeatures observed in many systems: 1 Galactic discs: Of the few galaxies for which the observations of galactic nuclei exist, two galaxies: NGC4486B(an elliptical galaxy) andM31(spiral galaxy), show an unusual double-peak distribution of stars at their centers. In order to explain such distributions, Tremaine in 1995 proposed an eccentric disc model for M31; this model was then further explored by many authors. In addition, lopsidedness is observed in many galaxies on larger scales, and such asymmetries need to be explained via robust modeling of galactic discs. 2 Debris disc: Many of the observed discs show non-axisymmetric structures, such as lopsided distribution in brightness of scattered light, warp, and clumps in the disc around β Pictoris; spiral structure inHD141569A,etc. Most of these features have been attributed to the presence of planets, and in some cases planets have also been detected. However, Jalali & Tremaine(2012)proposed that most of these structures can be formed also due to slow (m =1 or 2) modes. 3 Accretion Discs around stellar mass binaries have also been found to be asymmetric. One plausible reason for this asymmetry can be m =1slowmodes in these systems. Slow modes are studied in detail in this thesis. The main approaches that we have used, and the major conclusions from this work are as follows: Slow pressure modes in thin accretion disc Earlier work on slow modes assumed that the self-gravity of the disc dominates the pressure gradient in the discs. However, this assumption is not valid for thin and hot accretion discs around stellar mass compact objects. We begin our study of slow modes with the analysis of modes in thin accretion discs around stellar mass compact objects. First, the WKB analysis is used to prove the existence of these modes. Next, we formulate the eigenvalue equation for the slow modes, which turns out to be in the Sturm-Liouville form; thus all the eigenvalues are real. Real eigenvalues imply that the disc is stable to these perturbations. We also discuss the possible excitation mechanisms for these modes; for instance, excitation due to the stream of matter from the secondary star that feeds the accretion disc, or through the action of viscous forces. Slow modes in self-gravitating, zero-pressure fluid disc We next generalize the study of slow m = 1 modes for a single self-gravitating disc of Tremaine(2001) to a system of two self-gravitating counter–rotating, zero-pressure fluid discs, where the disc particles interact via softened-gravity. Counter– rotating streams of matter are susceptible to various instabilities. In particular, Touma(2002)found unstable modes in counter–rotating ,nearly Keplerian systems. These modes were calculated analytically for a two-ring system, and numerically for discs modeled assuming a multiple–ring system. Motivated by this, the corresponding problem for continuous discs was studied by Sridhar & Saini(2010),who proposed a simple model, with dynamics that could be studied largely analytically in the local WKB approximation. Their work, however, had certain limitations; they could construct eigenmodes only for η =0&12, where η is the mass fraction in the retrograde disc. They could only calculate eigenvalues but not the eigen functions. To overcome the above mentioned limitations, we formulate and analyze the full eigenvalue problem to understand the systematic behaviour of such systems. Our general conclusions are as follows 1 The system is stable for m = 1 perturbations in the case of no-counter rotation. 2. For other values of mass fraction , the eigenvalues are generally complex, and the discs are unstable. For η =12,theeigenvalues are imaginary, giving purely growing modes. 2 The pattern speed appears to be non-negative for all values of , with the growth(or damping) rate being larger for larger values of pattern speed. 3 Perturbed surface density profile is generally lopsided, with an overall rotation of the patterns as they evolve in time, with the pattern speed given by the real part of the eigenvalue. Local WKB analysis for Keplerian stellar disc We next urn to stellar discs, whose dynamics is richer than softened gravity discs. Jalali & Tremaine(2012)derived the dispersion relation for short wavelength slow modes for a single disc with Schwarzschild distribution function. In contrast to the softened gravity discs(which have slow modes only for m = 1), stellar discs permit slow modes for m 1. The dispersion relation derived by Jalali & Tremaine makes it evident that all m 1 slow modes are neutrally stable. We study slow modes for the case of two counter–rotating discs, each described by Schwarzschild distribution function, and derive the dispersion relation for slow m 1 modes in the local WKB limit and study the nature of the instabilities. One of the important applications of the dispersion relation derived in this chapter is the stability analysis of the modes. For fluid discs, it is well known that the stability of m = 0 modes guarantees the stability of higher m modes; and the stability criterion for such discs is the well known Toomre stability criterion. However, this is not the case for collisionless discs. Even if the discs are stable for axisymmetric modes, they can still be unstable for non-axisymmetric modes. The stability of axisymmetric modes is governed by the Toomre stability criterion The non-axisymmetric perturbations were found to be unstable if the mass in the retrograde component of the disc is non-zero. We next solve the dispersion relation using the Bohr-Sommerfeld quantization condition to obtain the eigen-spectrum for a given unperturbed surface density profile and velocity dispersion. We could obtain only the eigenvalues for no counter– rotation η = 0, where η is the mass fraction in the retrograde disc and equal counter–rotation(η =12). All the eigenvalues obtained were real for no counter– rotation, and purely growing/damping for equal counter–rotation. The eigenvalue trends that we get favour detection of high ω and low m modes observationally. We also make a detailed comparison between the eigenvalues for m = 1 modes that we obtain with those obtained after solving the integral eigenvalue problem for the softened gravity discs for no counter–rotation and equal counter–rotation. The match between the eigenvalues are quite good, confirming the assertion that softened gravity discs can be reasonable surrogates for collisionless disc for m =1 modes. Non-local WKB theory for eigenmodes One major limitation of the above method is that eigenfunctions cannot be obtained as directly as in quantum mechanics because the dispersion relation is transcendental in radial wave number . We overcome this difficulty by dropping the assumption of locality of the relationship between perturbed self-gravity and surface density. Using the standard WKB analysis and epicyclic theory, together with the logarithmic-spiral decomposition of surface density and gravitational potential, we formulate an integral equation for determining both WKB eigenvalues and eigenfunctions. The application of integral equation derived is not only restricted to Keplerian disc; it could be used to study eigenmodes in galactic discs where the motion of stars is not dominated by the potential due to a central black hole (however we have not pursued the potential application in this thesis). We first verify that the integral equation derived reduces to the well known WKB dispersion relation under the local approximation. We next specialize to slow modes in Keplerian discs. The following are some of the general conclusions of this work 1 We find that the integral equation for slow modes reduces to a symmetric eigenvalue problem, implying that the eigenvalues are all real, and hence the disc is stable. 2 All the non-singular eigenmodes we obtain are prograde, which implies that the density waves generated will have the same sense of rotation as the disc, albeit with a speed which is compared to the the rotation speed of the disc. 3 Eigenvalue ω decreases as we go from m =1 to 2. In addition, for a given , the number of nodes for m =1 are larger than those for m =2. 4 The fastest pattern speed is a decreasing function of the heat in the disc. Asymmetric features in various types of discs could be due to the presence of slow m =1 or 2 modes. In the case of debris discs, these asymmetric features could also be due to the presence of planets. Features due to the presence of slow modes or due to planets can be distinguished from each other if the observations are made for a long enough time. The double peak nucleus observed in galaxies like M31 and NGC4486B differ from each other: stellar distribution in NGC4486B is symmetric w.r.t. its photocenter in contrast to a lopsided distribution seen in M31. It is more likely that the double peak nucleus in NGC4486B is due to m = 2 mode, rather than m = 1 mode as is the case for M31. NGC4486B being an elliptical galaxy, it is possible that the excitation probability for m =2 mode is higher.
235

High Magnetic Field Neutron Stars : Cyclotron Lines and Polarization

Maitra, Chandreyee January 2013 (has links) (PDF)
This thesis concerns with the study of X-ray binaries which are gravitationally bound systems consisting of a compact object (either a neutron star or a black hole) and usually a non degenerate companion star, both rotating around the common centre of mass. The compact star shines brightly in the X-ray regime. Emission from these systems are powered by accretion which is the most radioactively efficient mechanism known in the universe by the release of gravitational potential energy when matter from the companion star falls on the compact object. Accretion onto high magnetic field neutron stars are special as the magnetic field plays a crucial role in governing the dynamics of gas flow and the flow of the matter close to the compact object. The radiation emitted from these systems are anisotropic and for a distant observer, the intensity is modulated at the spin period of the neutron star, hence these objects are called accretion powered pulsars. The angular pattern of the emitted radiation is also highly anisotropic and depends on the mass accreted and hence the luminosity. The beaming pattern commonly known as the pulse profiles exhibit a wide variety in the pulse shape and pulse fraction and vary with energy as well as intensity. They also exhibit cyclotron absorption features in their energy spectrum which are a direct probe to the magnetic field geometry of these systems. This thesis is dedicated to the study of the magnetic field and emission geometry of accretion powered pulsars through the pulse phase resolved studies of the cyclotron absorption features which are a direct probe of the magnetized plasma. In order to study these features in detail broadband continuum modeling of the energy spectrum is done, taking care of all other factors which may smear the pulse phase dependence. Another prerequisite for detailed continuum modeling is accounting for the low absorption dips in the pulse profiles of many these sources. The dips are presumably formed by phase locked accretion stream causing partial covering absorption when the stream is along our line of sight towards the emission region. Studying the pulse phase dependence of this partial covering absorber also provides us with important clues on the local environment of the neutron star and the structure of the accretion stream. All of these studies are performed with data from the broadband and most sensitive instruments onboard the Japanese satellite Suzuki. Lastly we provide estimates of the polarization expected to be detected from these sources by a Thomson scattering polarimeter being developed to observe the polarization of X-rays in the energy range of 5--30 keV. Along with the X-ray pulsars, we also make an estimate of the likelihood of detection of X-ray polarization from black hole X-ray binaries in different spectral states. This is a particularly interesting topic as it will play a crucial role in providing additional handles on the magnetic field geometry in accretion powered pulsars as well as constrain the fundamental parameters of a black hole like its spin.
236

T Tauri stars : mass accretion and X-ray emission

Gregory, Scott G. January 2007 (has links)
I develop the first magnetospheric accretion model to take account of the observed complexity of T Tauri magnetic fields, and the influence of stellar coronae. It is now accepted that accretion onto classical T Tauri stars is controlled by the stellar magnetosphere, yet to date the majority of accretion models have assumed that the stellar magnetic field is dipolar. By considering a simple steady state accretion model with both dipolar and complex magnetic fields I find a correlation between mass accretion rate and stellar mass of the form M[dot above] proportional to M[asterisk subscript, alpha superscript], with my results consistent within observed scatter. For any particular stellar mass there can be several orders of magnitude difference in the mass accretion rate, with accretion filling factors of a few percent. I demonstrate that the field geometry has a significant effect in controlling the location and distribution of hot spots, formed on the stellar surface from the high velocity impact of accreting material. I find that hot spots are often at mid to low latitudes, in contrast to what is expected for accretion to dipolar fields, and that particularly for higher mass stars, accreting material is predominantly carried by open field lines. Material accreting onto stars with fields that have a realistic degree of complexity does so with a distribution of in-fall speeds. I have also modelled the rotational modulation of X-ray emission from T Tauri stars assuming that they have isothermal, magnetically confined coronae. By extrapolating from surface magnetograms I find that T Tauri coronae are compact and clumpy, such that rotational modulation arises from X-ray emitting regions being eclipsed as the star rotates. Emitting regions are close to the stellar surface and inhomogeneously distributed about the star. However some regions of the stellar surface, which contain wind bearing open field lines, are dark in X-rays. From simulated X-ray light curves, obtained using stellar parameters from the Chandra Orion Ultradeep Project, I calculate X-ray periods and make comparisons with optically determined rotation periods. I find that X-ray periods are typically equal to, or are half of, the optical periods. Further, I find that X-ray periods are dependent upon the stellar inclination, but that the ratio of X-ray to optical period is independent of stellar mass and radius. I also present some results that show that the largest flares detected on T Tauri stars may occur inside extended magnetic structures arising from the reconnection of open field lines within the disc. I am currently working to establish whether such large field line loops can remain closed for a long enough time to fill with plasma before being torn open by the differential rotation between the star and the disc. Finally I discuss the current limitations of the model and suggest future developments and new avenues of research.
237

Structures des ophiolites d'Oman : flux mantellaire sous un centre d'expansion d'expansion oceanique et charriage a la dorsale

Ceuleneer, Georges 28 March 1986 (has links) (PDF)
L'ophiolite d'Oman est un fragment de la lithosphère océanique téthysienne obducté sur la marge arabe au crétacé supérieur. Elle occupe un domaine de la chaîne alpine où la convergence entre l'Arabie et l'Eurasie n'a pas encore atteint le stade de la collision continentale. Affleurant de façon, presque continue sur une longueur de 475 Kilomètres parallèlement à l'axe de la paléo- dorsale, c'est le plus grand segment de lithosphère océanique accessible à l'étude directe. La section mantellaire constitue 60% de la surface d'affleurement de l'ophiolite (30.000 Kilomètres carrées). Cette thèse est consacrée à la cartographie des structures internes de cette unité. Les structures crustales permettant d'établir une référentielle paléo-tectonique (paléo-horizontale, azimut et flanc de la paléo-dorsale) furent également relevées. Divers arguments pétrologiques et structuraux permettent d'apparenter l'ophiolite d'Oman aux dorsales rapides actuelles. Les péridotites mantellaires, de composition harzburgitique à dunitique, gardent l'empreinte de deux déformations plastiques successives, la première associée à la formation de la lithosphère (flux asthénosphérique), la seconde au charriage intra-océanique qui préluda à son obduction. La géométrie de l'écoulement asthénosphérique et la composition de la section mantellaire présentent de fortes variations longitudinales. La formation de la lithosphère océanique, au droit des dorsales rapides, implique l'ascension de diapirs asthénosphériques espacés de quelques dizaines à plus de cent Kilomètres les uns des autres. Siège d'une activité magmatique exceptionnelle, ces diapirs semblent également jouer le rôle de centres d'alimentation privilégiés de la chambre magmatique sus-jacente. Un de ces diapirs, figé et échantillonné lors du charriage à la dorsale, a pu être cartographié en détail (région de Maqsad) : le lux asthénosphérique, vertical dans un conduit de 10 à 20 Kilomètres de diamètre, se brise sous le plancher de la chambre magmatique dans une zone de transition épaisse seulement de quelques centaines de mètres et est ensuite canalisé parallèlement à l'axe de la dorsale sur une distance d'au moins 30 Kilomètres depuis le centre du conduit. Cette géométrie implique une modification brutale de la rhéologie mantellaire dans la zone de transition attribuée à une augmentation catastrophique du rapport magma/roche. Un modèle physique de circulation, asthénosphérique a été construit en introduisant une discontinuité de viscosité de plusieurs ordres de grandeur au sommet du diapir. Une telle condition permet, en effet, de canaliser un pourcentage important du flux dans un étroit créneau superficiel. La pression dans le diapir est discontinue sur une épaisseur d'une centaine de mètres sous l'interface pour pouvoir vaincre la surpression due au fluage plastique et continuer son ascension vers la surface. Loin des diapirs, le flux mantellaire peut être régulier à l'échelle de la centaine de kilomètres ; il est alors sub-parallèle au Moho et perpendiculaire à l'axe de la dorsale, évoquant l'accrétion de la lithosphère en régime d'expansion stationnaire. L'angle d'une dizaine de degrés entre le Moho et le plan de fluage reflète probablement la pente moyenne des isothermes au niveau de la zone d'accrétion (flanc de la dorsale). La déformation associée au charriage intra-océanique (CIO) affecte les périodiques sur une épaisseur de quelques centaines de mètres au-dessus du plan de charriage basal, lui-même situé à une profondeur maximale de neuf kilomètres sous le paléo-Moho. Elle peut affecter également des niveaux plus élevés de la section mantellaire et la section crustale sous forme de bandes de cisaillement mylonitiques verticales pouvant atteindre 2 kilomètres d'épaisseur. Ces cisaillements sont contemporains de l'intrusion de magmas hydratés au sein de la section mantellaire, peut-être à mettre en relation avec le volcanisme différencié (" volcanisme 2 ") coiffant l'Ophiolite. Le CIO s'accompagne localement de la fusion de la semelle. Lors de l'initiation du CIO, la lithosphère présentait un fort gradient thermique vertical. D'un point de vue cinématique, la déformation enregistrée par la semelle, les péridotites basales et les bandes de cisaillement sont en concordance parfaite. Le CIO s'accompagne de déplacements considérables de la lithosphère charriante parallèlement à l'axe de la dorsale (de l'ordre de la centaine de kilomètres). L'initiation du CIO à la dorsale elle-même rend le mieux compte de ces observations. Le charriage à la dorsale implique l'inversion rapide (1 à 2 millions d'années) du régime d'expansion en régime compressif. On l'explique par un blocage momentané de la subduction de la Téthys sous l'Eurasie causée par des collisions entre des microcontinents, des arcs insulaires et la marge active eurasienne survenues à cette époque (Albien supérieur). De manière générale, les événements enregistrés par l'Ophiolite d'Oman s'intègrent bien dans l'évolution cinématique et géologique du domaine téthysien.
238

Les solides du système solaire primitif : géochimie et dynamique

Jacquet, Emmanuel 18 June 2012 (has links) (PDF)
Cette thèse est consacrée à l'histoire des solides du système solaire primitif. Nous étudions la dynamique des composants chondritiques et trouvons que leur préservation pendant plusieurs Ma dans le disque protoplanétaire nécessite une zone morte. Cette dynamique est essentiellement gouvernée par un paramètre de découplage gaz-solide S que nous conjecturons avoir été <1 et >1 lors de l'accrétion des chondrites carbonées et non carbonées, respectivement. Nous étudions aussi des modèles réduits pour l'interaction entre la turbulence magnétohydrodynamique et la sédimentation de la poussière ainsi que l'instabilité d'écoulement linéaire. Nous mesurons la concentration d'éléments en trace dans les phases des chondres dans Vigarano, Renazzo, Acfer 187, Bishunpur et Sahara 97096. L'olivine dans les chondres de type I semble résulter d'une cristallisation à l'équilibre tandis que le pyroxène enregistre des taux de refroidissement rapides et est compatible avec une interaction gaz-liquide.
239

Understanding The Solar Magnetic Fields :Their Generation, Evolution And Variability

Chatterjee, Piyali 07 1900 (has links)
The Sun, by the virtue of its proximity to Earth, serves as an excellent astrophysical laboratory for testing our theoretical ideas. The Sun displays a plethora of visually awe-inspiring phenomena including flares, prominences, sunspots, corona, CMEs and uncountable others. It is now known that it is the magnetic field of the Sun which governs all these and also the geomagnetic storms at the Earth, which owes its presence to the interaction between the geomagnetic field and the all-pervading Solar magnetic field in the interplanetary medium. Since the solar magnetic field affects the interplanetary space around the Earth in a profound manner, it is absolutely essential that we develop a comprehensive understanding of the generation and manifestation of magnetic fields of the Sun. This thesis aims at developing a state-of-the-art dynamo code SURYA1taking into account important results from helioseismology and magnetohydrodynamics. This dynamo code is then used to study various phenomenon associated with solar activity including evolution of solar parity, response to stochastic fluctuations, helicity of active regions and prediction of future solar cycles. Within last few years dynamo theorists seem to have reached a consensus on the basic characteristics of a solar dynamo model. The solar dynamo is now believed to be comprised of three basic processes: (i)The toroidal field is produced by stretching of poloidal field lines primarily inside the tachocline – the region of strong radial shear at the bottom of the convection zone. (ii) The toroidal field so formed rises to the surface due to magnetic buoyancy to form active regions. (iii) Poloidal field is generated at the surface due to decay of tilted active regions – an idea attributed to Babcock (1961) & Leighton (1969). The meridional circulation then carries the poloidal field produced near the surface to the tachocline. The profile of the solar differential rotation has now been mapped by helioseismology and so has been the poleward branch of meridional circulation near the surface. The model I describe in this thesis is a two-dimensional kinematic solar dynamo model in a full sphere. Our dynamo model Surya was developed over the years in stages by Prof. Arnab Rai Choudhuri, Dr. Mausumi Dikpati, Dr. Dibyendu Nandy and myself. We provide all the technical details of our model in Chap. 2 of this thesis. In this model we assume the equatorward branch of the meridional circulation (which hasn’t been observed yet), to penetrate slightly below the tachocline (Nandy & Choudhuri 2002, Science, 296, 1671). Such a meridional circulation plays an important role in suppressing the magnetic flux eruptions at high latitudes. The only non-linearity included in the model is the prescription of magnetic buoyancy. Our model is shown to reproduce various aspects of observational data, including the phase relation between sunspots and the weak, efficient. An important characteristic of our code is that it displays solar-like dipolar parity (anti-symmetric toroidal fields across equator) when certain reasonable conditions are satisfied, the most important condition being the requirement that the poloidal field should diffuse efficiently to get coupled across the equator. When the magnetic coupling between the hemispheres is enhanced by either increasing the diffusion or introducing an α ff distributed throughout the convection zone, we find that the solutions in the two hemispheres evolve together with a single period even when we make the meridional circulation or the α effect different in the two hemispheres. The effect of diffusive coupling in our model is investigated in Chap. 3. After having explored the regular behaviour of the solar cycle using the dynamo code we proceed to study the irregularities of the Solar cycle.We introduce stochastic fluctuations in the poloidal source term at the solar surface keeping the meridional circulation steady for all the numerical experiments. The dynamo displays oscillatory behaviour with variable cycle amplitudes in presence of fluctuations with amplitudes as large as 200%. We also find a statistically significant correlation between the strength of polar fields at the endofone cycle and the sunspot number of the next cycle. In contrast to this there exist a very poor correlation between the sunspot number of a cycle and the polar field formed at its end. This suggests that during the declining phase of the sunspot cycle poloidal field generation from decaying spots takes place via the Babcock-Leighton mechanism which involves randomness and destroys the correlation between sunspot number of a cycle and the polar at its end. In addition to this we also see that the time series of asymmetries in the sunspot activity follows the time series of asymmetries in the polar field strength with a lag of 5 years. We also compare our finding with available observational data. Although systematic measurements of the Sun’s polar magnetic field exist only from mid-1970s, other proxies can be used to infer the polar field at earlier times. The observational data indicate a strong correlation between the polar field at a sunspot minimum and the strength of the next cycle, although the strength of the cycle is not correlated well with the polar field produced at its end. We use these findings about the correlation of polar fields with sunspots to develop an elegant method for predicting future solar cycles. We feed observational data for polar fields during the minima of cycle n into our dynamo model and run the code till the next minima in order to simulate the sunspot number curve for cycle n+1. Our results fit the observed sunspot numbers of cycles 21-23 reasonably well and predict that cycle 24 will be about 30–35% weaker than cycle 23. We fit that the magnetic diffusivity in the model plays an important role in determining the magnetic memory of the Solar dynamo. For low diffusivity, the amplitude of a sunspot cycle appears to be a complex function of the history of the polar field of earlier cycles. Only if the magnetic diffusivity within the convection zone is assumed to be high (of order 1012cms−1), we are able to explain the correlation between the polar fiat a minimum and the next cycle. We give several independent arguments that the diffusivity must be of this order. In a dynamo model with diffusivity like this, the poloidal field generated at the mid-latitudes is advected toward the poles by the meridional circulation and simultaneously diffuses towards the tachocline, where the toroidal field for the next cycle is produced. The above ideas are put forward in Chap. 6. We next come to an important product of the dynamo process namely the magnetic helicity. It has been shown independently by many research groups that the mean value of the normalized current helicity αp= B (Δ×B)/B2in solar active regions is of the order of 10−8m−1, predominantly negative in the northern hemisphere, positive in the southern hemisphere. Choudhuri (2003, Sol. Phys., 215, 31)developed a model for production of the helicity of the required sign in a Babcock-Leighton Dynamo by wrapping of poloidal field lines around a fluxtube rising through the convection zone. In Chap. 7 we calculate helicities of solar active regions based on this idea. Rough estimates based on this idea compare favourably with the observed magnitude of helicity. We use our solar dynamo model to study how helicity varies with latitude and time. At the time of solar maximum, our theoretical model gives negative helicity in the northern hemisphere and positive helicity in the south, in accordance with observed hemispheric trends. However, we fit that during a short interval at the beginning of a cycle, helicities tend to be opposite of the preferred hemispheric trends. After calculating the sign and magnitude of helicity of the sunspots we worry about the distribution of helicity inside a sunspot. In Chap. 8 we model the penetration of a wrapped up background poloidal field into a toroidal magnetic flux tube rising through the solar convective zone. The rise of the straight, cylindrical flux tube is followed by numerically solving the induction equation in a comoving Lagrangian frame, while an external poloidal magnetic field is assumed to be radially advected onto the tube with a speed corresponding to the rise velocity. One prediction of our model is the existence of a ring of reverse current helicity on the periphery of active regions. On the other hand, the amplitude of the resulting twist depends sensitively on the assumed structure (ffvs. concentrated/intermittent) of the active region magnetic field right before its emergence, and on the assumed vertical profile of the poloidal field. Nevertheless, in the model with the most plausible choice of assumptions a mean twist comparable to the observational results. Our results indicate that the contribution of this mechanism to the twist can be quite find under favourable circumstances it can potentially account for most of the current helicity observed in active regions.
240

Phasenaufgelöste Spektrophotometrie des magnetischen kataklysmischen Veränderlichen EX Hya / Phase resolved spectrophotometry of the magnetic cataclysmic variable EX Hya

Eisenbart, Stephan Friedrich 31 October 2000 (has links)
No description available.

Page generated in 0.0635 seconds