Spelling suggestions: "subject:"diacetic acid"" "subject:"diacetic cid""
41 |
The Determination of the Constants in the System of Methyl Alcohol, Acetic Acid, and WaterBonner, Virginia Ruth 06 1900 (has links)
The purpose of this study is to determine the specific reaction or velocity constants and the equilibrium constant in a system of methyl alcohol and acetic acid, a bimolecular reaction of the second order.
|
42 |
Optimal Operation of Batch Reactive Distillation Process Involving Esterification Reaction SystemEdreder, E.A., Mujtaba, Iqbal, Emtir, M. January 2015 (has links)
No / The performance of batch reactive distillation process involving the esterification of acetic acid with methanol to produce methyl acetate and water is considered in this work. Two cases studies with varying amount of the reactants are considered. The reflux ratio (single time interval) is selected as the control variable to be optimised (treated as piecewise constant) for different but fixed batch time ranging from 5 to 15 h, so as to maximise the conversion of methanol subject to product purity of methyl acetate. The dynamic optimisation problem is converted to a nonlinear programming problem by Control Vector Parameterization (CVP) technique and is solved by using efficient SQP method. The optimisation results show that as the methanol and methyl acetate are wide boiling, the separation of methyl acetate is easier without losing much of methanol reactant. The conversion improves by 6.4 % due to sufficient amount of acetic acid being reacted with methanol. Moreover an excess of acetic acid leads to high operation temperature and therefore high reflux operation (to reduce loss of methanol from the top of the column) to maximise the conversion.
|
43 |
Development of acetic-acid tolerant Zymomonas mobilis strains through adaptationWang, Yun 14 May 2008 (has links)
Zymomonas mobilis is one of the most promising microorganisms for bioethanol production. However, its practical use on industrial scale is impeded by its high sensitivity to acetate, which is present in high concentration in pretreated biomass.
This research develops an adaptive mutation method for generating acetate-tolerant strains for bioethanol production. The goal is to obtain Zymomonas mobilis strain capable of growing and producing ethanol in the presence of acetate at a concentration typical of a pretreated biomass (2-3%). The interplay between the ability of fermentative production of ethanol and acetate tolerance will be investigated through careful fermentation studies. The potential cross-tolerance to other inhibitors, commonly present in pretreated biomass will be evaluated. A preliminary study on the mechanism of acetate tolerance at the cell membrane level will be conducted.
The strain developed through this research will be useful in bioethanol production from biomass. The insights into tolerance mechanisms gained through this study will allow a more rational approach to further engineer a better producing strain.
|
44 |
A study on the potential effects of endogenous nitric oxide in the healing of acetic acid-induced gastric ulcer許煥珍, Hui, Wun-chun. January 2001 (has links)
published_or_final_version / Medicine / Master / Master of Philosophy
|
45 |
Methanol carbonylation with metal/zeolite catalystsFuller, G. P. January 2002 (has links)
No description available.
|
46 |
Endogenous Levels of Indole-3-Acetic Acid in Synchronously Grown Chlorella PyrenoidosaGrotbeck, Laurence Merritt 08 1900 (has links)
The purpose of this study was to determine the endogenous levels of indole-3-acetic acid throughout the life cycle of Chlorella pyrenoidosa, and to show a correlation between onset of cell division and IAA levels.
|
47 |
Effect of Indole-3-Acetic Acid on the Nucleic Acids of Synchronous Cultures of Chlorella PyrenoidosaPeterson, James Arthur 05 1900 (has links)
It was the purpose of this study to investigate the effect of various concentrations of IAA on the nucleic acids of Chlorella pyrenoidosa TX 7-11-05. The time during the life cycle when the greatest effect occurred was investigated by the use of synchronous cultures.
|
48 |
Identifying the Molecular Mechanism of Indole-3-Acetic Acid Detection in the Fungi Saccharomyces cerevisiae and Candida albicansPerelta, Alisha Nicole 03 May 2012 (has links)
Fungal infections are caused by a variety of fungi, and with a variety of clinical manifestations. Antifungal treatments are limited due to host toxicity and fungi gaining resistance. By utilizing the model organism Saccharomyces cerevisiae, we hope to elucidate the molecular mechanisms of fungal pathogenesis that we can then validate in the human pathogen Candida albicans, as well as explore options for novel therapies. Small molecule signaling is a method by which single-cell organisms can communicate with one another, enabling them to coordinate gene expression. This is a useful tool because it allows microbes to turn on phenotypes that are only valuable when done in large numbers, such as bioluminescence, or virulence traits. We have previously shown that the yeast Saccharomyces cerevisiae synthesizes the secondary metabolite indole-3-acetic acid (IAA) from tryptophan. IAA is secreted into the environment, where it acts as a signal. At low concentrations, the IAA signals yeast to induce virulence traits, while at high concentrations, it is lethal. The purpose of this thesis was to investigate the molecular mechanism of IAA (plant hormone auxin) regulation in fungi, specifically, Saccharomyces cerevisiae and the human pathogen Candida albicans. Towards this end, I first focused my efforts on evaluating the role of S. cerevisiae Grr1, as a putative IAA receptor. By evaluating the IAA response of several Grr1 mutants, I was able to show that the leucine-rich repeat region, while not required for function, likely plays a significant role in maintaining the structural integrity of the protein. Next, I evaluated IAA associated phenotypes, such as filamentation, surface adhesion and IAA uptake of the grr1 null mutant in the human pathogen Candida albicans. Together, these data support the hypothesis that GRR1 regulates IAA response, probably by regulating the IAA uptake carriers.
|
49 |
Aspects of the metabolism of aromatic amines particularly sulphanomide drugsBridges, James Wilfrid January 1963 (has links)
The work described in this thesis is in three parts:. Part I deals with the metabolism of 5-p-aminobenzene-sulphonamide- 3-methylisothiazole (sulphasomizole), 5-amino-3--methylisothiazole, sulphanilamide, and some of the acetyl derivatives. A marked species difference has been found in the metabolism of sulphasomizole.
|
50 |
Polyamines, indole-3-acetic acid and gibberellic acid affect root elongation in Chinese radish ( Raphanus sativus L.)Huang, Chiung-kuei 03 February 2004 (has links)
The effects of polyamines, indole-3-acetic acid ( IAA ) and gibberellic acid ( GA3 ) on root elongation in radish ( Raphanus sativus L. cv. Luh Chin ) were studied. Incubation of radish seedlings in spermine or spermidine at 0.01 mM for 1hour, and then transferred to deionized water for 24 hours at 25¢J in the dark promoted root elongation as compared with concentration at 0.1 or 2 mM. When roots were treated with spermine or spermidine at 1 mM for 5 minutes, and then transferred to deionized water for 24 hours, root length increased significantly compared with controls. However, root length reduced gradually with increasing treatment times. Putrescine did not affect root elongation when treated in the same manner as spermine or spermidine. Exogenous spermidine synthesis inhibitor ( cyclohexylamine ) at 0.01, 0.1, 1 or 2 mM to the roots inhibited root elongation. The inhibition of root elongation was parallel to cyclohexylamine doses. Root length increased when spermine at 1 mM plus IAA at 10¡Â¹ ¡Ñ 6 nM was applied for 1 hour, and then transferred to deionized water for 24 hours compared with spermine at 1 mM plus IAA 10¡Â² or 1¡Ñ 6 nM. Root length was longer when treated with spermidine at 1 mM plus IAA at 10¡Â²¡Ñ 6 nM than at 10¡Â¹ or 1¡Ñ 6 nM. Root treated with spermine at 1 mM plus GA3 at 10¡Â²¡Ñ3 £gM Resulted in a longer root than treated with spermine at 1 mM plus GA3 at 10¡Â¹ or 1¡Ñ 3 £gM. Roots treated with spermidine at 1 mM plus GA3 at 10¡Â²¡Ñ3 £gM promoted root elongation. However, any treatments of spermine or spermidine in combination with IAA or GA3 significantly reduced the root length when compared with controls. Furthermore, either IAA or GA3 could not restore the inhibitory effects of root elongation caused by spermine or spermidine treatment at 1 mM for 1 hour and then transferred to deionized water for 24 hours. Endogenous spermidine and spermine contents after exogenous spermine plus GA3 treatment increased by increasing GA3 concentrations. But endogenous spermidine and spermine contents was the least in spermine 1 mM plus IAA 10¡Â¹ ¡Ñ 6 nM treatment. However, endogenous spermidine contents after exogenous spermidine plus IAA or GA3 application reduced significantly when compared with controls. But there is no significant difference of spermidine content between different exogenous IAA doses. In contrast, spermidine content maintained at a high level in spermidine at 1 mM plus GA3 at 10¡Â²¡Ñ3 £gM as compared with other spermidine plus GA3 combinations. However, endogenous spermine contents were not affected by exogenous spermidine plus IAA or GA3.
|
Page generated in 0.0508 seconds