• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 17
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The use of acetylacetonate-based paramagnetic metalloligands in the construction of supramolecular magnetic coordination capsules

O'Connor, Helen January 2018 (has links)
In molecular magnetism, rational design and serendipity have played complementary roles in the synthesis of complexes which display a breadth of interesting physical characteristics. These range from the basic understanding of magneto‐structural correlations, to more complicated phenomena such as slow relaxation of the magnetisation, spin frustration effects, and tuning magnetic interactions with a view to spintronics. The inherent physical properties of these complexes has already afforded molecules which can behave as single‐molecule magnets, singlechain magnets, single‐ion magnets, magnetic metal‐organic frameworks, magnetic refrigerants, and molecular qubits. Even when the building blocks are well known, the rational design of magnetic clusters can be extremely difficult, with the shape and nuclearity often dominated by several internal and external factors. Metallosupramolecular processes proffer an attractive strategy to the rational design of these clusters by making use of structurally‐rigid precursors which, when combined in the correct stoichiometric ratio, can be used to construct various predefined discrete two‐ and three‐dimensional polygons and polyhedra. In particular, the use of metalloligands as structurally‐rigid precursors is appealing, not only because of their often‐straightforward synthesis, but because of their ability to be easily modified in order to create comparable building blocks with different chemical and physical properties. It is therefore surprising that there are limited examples of magnetic architectures built through this approach. Each chapter of this thesis aims to exploit the use of acetylacetonate‐based paramagnetic metalloligands for the synthesis of structurally analogous magnetic coordination capsules, with inherently different magnetic properties. Chapter 2 describes the structural and magnetic studies of fourteen tetradecanuclear coordination cubes, synthesised using the paramagnetic metalloligand [MIIIL3] (MIII = Cr, Fe; HL = 1‐(4‐pyridyl)butane‐1,3‐dione). The heterometallic [MIII8MII6L24]n+ (MII = Co, Ni, Cu, and Pd; n = 0‐ 12) cubes formed from the reaction of [MIIIL3] and a “naked” MII salt are all topologically similar, with the MIII ions occupying the corners of the cubes and the MII ions occupying the faces. Excluding the PdII‐based cube, all of the complexes display magnetic exchange interactions at low temperatures. Due to the enormous size of these clusters and their resulting matrices, the magnetic fitting was done using the process of statistical spectroscopy. Chapter 3 describes the structural and magnetic studies of five [MIII2MII3L6]n+ (MIII = Cr, Fe, and Al; MII = Co, Zn, and Pd; HL = 1‐(4‐pyridyl)butane‐1,3‐dione; n = 0‐6) trigonal bipyramids, built using the diamagnetic and paramagnetic metalloligands [MIIIL3]. [FeIII2CoII3L6Cl6] represents the first magnetic trigonal bipyramid synthesised through the pyridyl‐based metalloligand approach. SQUID magnetometry studies show a weak antiferromagnetic exchange interactions between the FeIII and CoII ions, while EPR spectroscopy measurements demonstrate a small increase in the zero‐field splitting parameter of the FeIII ion upon coordination of [FeIIIL3] to a MII ion. Complete active space self‐consistent field (CASSCF) calculations show the axial zero‐field splitting parameter of CoII to be ≈‐14 cm‐1, which is consistent with the magnetothermal and spectroscopic data. Chapter 4 describes the synthesis and characterisation of six magnetic trigonal bipyramids, synthesised through dynamic covalent reactions of the metalloligand [FeIIILNH23] (HLNH2 = 1‐(4‐ aminophenyl)butane‐1,3‐dione) with either a dialdehyde or diacyl dichloride. The three [FeIII2MII3Lim3]n+ (MII = Co, Ni; n = 0‐6) imine‐based cages are formed from the reaction of the metalloligand with 2,6‐pyridinedicarboxaldehyde in the presence of a templating MII salt and a catalytic amount of acid, whereas the three [FeIII2Lam3] amide‐based cages are formed from the reaction of the metalloligand with isophthaloyl chloride in the presence of a base. The [FeIII2NiII3Lim3]n+ trigonal bipyramid displays weak antiferromagnetic interactions between FeIII and NiII ions, with JFe‐Ni = ‐0.12 cm‐1 and DNi = 8.93 cm‐1, while the [FeIII2Lam3] amide‐based cages display interesting configurational features dominated by the enthalpic gain from a series of intermolecular interactions.
12

Koordinationspolymere auf der Basis neuer oligofunktioneller Pyridinliganden: Synthese, Charakterisierung und Anwendungspotenzial

Winter, Silke 16 May 2003 (has links)
Gegenstand der vorliegenden Arbeit ist der Entwurf und die Realisierung kristalliner organisch-anorganischer Festkörper mit wohldefinierten Hohlraumstrukturen auf der Grundlage von Metallkoordinationen. Basierend auf generellen Prinzipien des Crystal Engineering wurden anhand von drei Typen oligofunktioneller Liganden und ausgewählter koordinationschemischer Synthesemethoden neue polymere Komplexverbindungen hergestellt, die im Hinblick auf Koordinationsgeometrie und Liganddimensionalität strukturspezifische Unterschiede aufweisen. Diese sind durch Anwendung von strukturanalytischen Methoden belegt. Untersuchungsergebnisse der polymeren Komplexe als Rezeptoren für leichtflüchtige Lösungsmittel lassen erkennen, dass sich die erzeugten Koordinationspolymere potentiell als Beschichtungen in massensensitiven Sensoren eignen. Weiterhin konnte durch strukturgeometrische Untersuchungen an Modellkomplexen eine strukturelle Grundlage für den zukünftigen Entwurf von Koordinationspolymeren geschaffen werden.
13

Direct Nanoprototyping of Functional Materials via Focused Electron Beam

Riazanova, Anastasia January 2013 (has links)
During recent years the demand for nanoscale materials with tailor-made functional properties as bulk species, is continuously and progressively rising for such fields as e.g. micro- and nano-electronics, plasmonics, spintronics, bio-technology, bio-sensing and life sciences. Preserving and / or improving properties of functional materials with their simultaneous size reduction and high-resolution site-specific positioning is indeed very challenging, for both conductors and insulators. One of the advanced nanoprototyping methods that can be utilized for this purpose is the Electron-Beam-Induced Deposition, or shortly EBID. This process is based on a local decomposition by a focused electron beam of a precursor gas molecules adsorbed on the sample’s surface. The beauty of this method is that it gives a unique possibility of rapid creation of site-specific nanoscale 3D structures of precise shape in a single operation. It’s an additive process that can be easily combined with other patterns. However, besides all the benefits, EBID has some constraints, in particular low purity of the deposited materials, due to the organometallic nature of the used precursors. Chemical composition of EBID patterns is strongly dependent on the chosen gas chemistry, the substrate, many deposition parameters and post-treatment processes applied to the deposited structures. In our research we focused on deposition of Co, Au, SiO2, C, W and Pt, their purification and shape control. And this thesis presents an overview of our accomplishments in this field. Depending on the gas chemistry of interest, three major purification approaches of EBID-grown materials were tested out: - Post-deposition annealing: in air and in the controlled atmosphere, - Deposition onto a preheated substrate, - Deposition in the presence of reactive gases. As a result, a dramatic purity improvement was observed and a significant advancement was achieved in creation of high-purity gold, cobalt and silicon dioxide nanoscale structures. In particular: 1)   For the Me2Au(acac) precursor, we developed a nanofabrication routine combining application of wetting buffer layers, fine tuning of EBID parameters and subsequent post-annealing step, which led to formation of high-purity planar and high aspect ratio periodic Au nanopatterns. We also describe the adopted and gently adjusted wet etching method of undesirable buffer layer removal, required in some cases for the further device application. 2)   For the Co2(CO)8 precursor, in-situ seeded growth in conjunction with EBID at the elevated substrate temperature resulted in a deposition of pure nanocrystalline Co with magnetic and transport properties close to the bulk material. 3)   For the tetraethyl orthosilicate precursor, or shortly TEOS, assisting of the deposition process with the additional oxygen supply led to the EBID of carbon-free amorphous insulating Si-oxide, with the absorption and refraction properties comparable to those for fused silica. Several applications of EBID nanopatterns are also discussed. / <p>QC 20131028</p>
14

Experimental Study of In Situ Combustion with Decalin and Metallic Catalyst

Mateshov, Dauren 2010 December 1900 (has links)
Using a hydrogen donor and a catalyst for upgrading and increasing oil recovery during in situ combustion is a known and proven technique. Based on research conducted on this process, it is clear that widespread practice in industry is the usage of tetralin as a hydrogen donor. The objective of the study is to find a cheaper hydrogen donor with better or the same upgrading performance. Decalin (C10H18) is used in this research as a hydrogen donor. The experiments have been carried out using field oil and water saturations, field porosity and crushed core for porous medium. Four in situ combustion runs were performed with Gulf of Mexico heavy oil, and three of them were successful. The first run was a control run without any additives to create a base for comparison. The next two runs were made with premixed decalin (5 percent by oil weight) and organometallic catalyst (750 ppm). The following conditions were kept constant during all experimental runs: air injection rate at 3.1 L/min and combustion tube outlet pressure at 300 psig. Analysis of the performance of decalin as a hydrogen donor in in-situ combustion included comparison of results with an experiment where tetralin was used. Data from experiments of Palmer (Palmer-Ikuku, 2009) was used for this purpose, where the same oil, catalyst and conditions were used. Results of experiments using decalin showed better quality of produced oil, higher recovery factor, faster combustion front movement and higher temperatures of oxidation. API gravity of oil in a run with decalin is higher by 4 points compared to a base run and increased 5 points compared to original oil. Oil production increased by 7 percent of OOIP in comparison with base run and was 2 percent higher than the experiment with tetralin. The time required for the combustion front to reach bottom flange decreased 1.6 times compared to the base run. The experiments showed that decalin and organometallic catalysts perform successfully in in situ combustion, and decalin is a worthy replacement for tetralin.
15

Testing The Ruthenium(iii) Acetylacetonate And 1,2-bis(diphenylphosphino)ethane System As Homogeneous Catalyst In The Hydrolysis Of Sodium Borohydride

Demiralp, Tulin 01 June 2008 (has links) (PDF)
Recent studies have shown that ruthenium(III) acetylacetonate is acting as homogeneous catalyst in the hydrolysis of sodium borohydride. Although trimethlyphosphite is found to be a poison for the catalytic hydrolysis of sodium borohydride, a longer observation of the reaction in the presence of ruthenium(III) acetylacetonate and 2 equivalent trimethylphosphite shows an unexpected enhancement in the catalytic activity after an induction period. The same rate enhancement is observed when 2 equivalent triphenylphosphine is added into the reaction solution. Addition of 1 equivalent 1,2-bis(diphenylphosphino)ethane, dppe, into the solution shows similarly a rate enhancement in the hydrolysis of sodium borohydride catalyzed by ruthenium(III) acetylacetonate. The effect of 1,2-bis(diphenylphosphino)ethane on the catalytic activity of ruthenium(III) acetylacetonate in the hydrolysis of sodium borohydride was studied by varying mole ratio of dppe / Ru(acac)3, ruthenium concentration, substrate concentration and temperature. The highest enhancement in the rate of hydrolysis was obtained when 1 equivalent dppe was used and therefore, this mole ratio of dppe / Ru(acac)3 was used in the further studies. The rate of the reaction was found to be first order in catalyst concentration and zero order in substrate concentration. From the evaluation of rate constant versus temperature data, the activation parameters for the hydrolysis of sodium borohydride catalyzed by ruthenium(III) acetylacetonate plus 1 equivalent dppe were found to be Ea= 59 &plusmn / 2 kJ/mol, &amp / #8710 / H&amp / #8800 / = 60 &plusmn / 1 kJ.mol-1 and &amp / #8710 / S&amp / #8800 / = -50 &plusmn / 3 J.(mol.K)-1. A series of control experiments were performed to characterize the active catalyst. However, the only useful information could be obtained by comparison of the UV-vis electronic absorption spectra taken from the solution during the catalytic reaction, is that, ruthenium(III) is reduced to ruthenium(II) in the course of reaction. It was concluded that a ruthenium(II) species is formed as a transient and may be the active catalyst in the reaction. After the reaction, the only ruthenium species isolated from the solution was the ruthenium(III) acetylacetonate.
16

Abordagem inovadora com plasma de baixa temperatura para a deposição de filmes a partir do acetilacetonato de alumínio / Innovative low temperature plasma approach for deposition of films from aluminum acetylacetonate

Battaglin, Felipe Augusto Darriba [UNESP] 06 July 2016 (has links)
Submitted by FELIPE AUGUSTO DARRIBA BATTAGLIN null (darriba@bol.com.br) on 2016-08-17T23:44:40Z No. of bitstreams: 1 DIS_MEST2016_BATTAGLIN FELIPE.pdf: 6951544 bytes, checksum: 2d13cd64aaec5226e6031c18795aaca7 (MD5) / Approved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-08-19T18:47:28Z (GMT) No. of bitstreams: 1 battaglin_fad_me_soro.pdf: 6951544 bytes, checksum: 2d13cd64aaec5226e6031c18795aaca7 (MD5) / Made available in DSpace on 2016-08-19T18:47:28Z (GMT). No. of bitstreams: 1 battaglin_fad_me_soro.pdf: 6951544 bytes, checksum: 2d13cd64aaec5226e6031c18795aaca7 (MD5) Previous issue date: 2016-07-06 / Filmes de alumina foram depositados a partir de uma nova metodologia de deposição a plasma, utilizando o pó de acetilacetonato de alumínio (AAA) como precursor. Em trabalho prévio do grupo, foi demonstrada a viabilidade do sputtering do AAA em plasmas de argônio para deposição de filmes finos. Os bons resultados obtidos estimularam o desenvolvimento do presente trabalho, visando o aperfeiçoamento da metodologia de deposição. Para isso, primeiramente foram investigados os efeitos da alteração da composição química da atmosfera do plasma, por meio da incorporação de diferentes proporções de oxigênio (O2%) ao argônio, tornando o processo um sputtering reativo. As deposições foram realizadas espalhando-se o pó do AAA no eletrodo inferior de um sistema de plasma acoplado capacitivamente. Argônio, oxigênio ou a mistura de ambos foram admitidos até a pressão de 11,0 Pa. O plasma foi gerado pela aplicação de sinal de radiofrequência (13,56 MHz, 150 W) ao eletrodo contendo o pó, mantendo-se o eletrodo superior, também utilizado como porta-amostras, aterrado. O tempo de deposição foi de 90 minutos. Investigou-se o efeito da O2%, variada de 0 a 100%, nas propriedades dos filmes. Na etapa subsequente, filmes foram depositados por sputtering reativo utilizando-se a condição considerada ótima na última etapa do trabalho (O2% = 25%) e mantendo-se as condições de pressão, potência e tempo de tratamento constantes. Todavia, ao invés de aterrar o porta-amostras, pulsos retangulares negativos (600 V, 2 kHz, 1-100% de ciclo de trabalho) foram aplicados, promovendo bombardeamento iônico durante a deposição por sputtering reativo. O efeito do ciclo de trabalho dos pulsos nas propriedades dos filmes foi avaliado. Na última etapa do trabalho, filmes foram depositados pelo sputtering reativo a partir de atmosferas contendo 25% de O2 e 75% de Ar e em condições mais energéticas que as utilizadas nos ciclos anteriores. Para tal um primeiro conjunto de amostras foi preparado mediante aquecimento resistivo do porta-amostras (410ºC) em plasma de menor pressão (4,0 Pa) que a anteriormente utilizada. O tempo de deposição foi de 28 minutos. Um segundo conjunto de amostras foi preparado associando-se bombardeamento iônico de mais alta energia, pela aplicação de pulsos de 1200 V (20% ciclo de trabalho) ao porta-amostras e também reduzindo a pressão da atmosfera de deposição para 4,0 Pa. Nesta condição, o tempo de deposição foi de 60 minutos. Comparou-se os resultados obtidos nestes experimentos aos equivalentes obtidos anteriormente. A espessura da camada foi obtida por meio de um perfilômetro e a taxa de deposição pela razão entre espessura e tempo de deposição. A composição elementar e a estrutura molecular dos filmes foram investigadas através das técnicas de espectroscopia de retroespalhamento Rutherford e de absorção no infravermelho, respectivamente. Difração de raios X foi utilizada para investigar a microestrutura dos filmes. Inspeções na morfologia e composição química das superfícies foram conduzidas associando microscopia eletrônica de varredura e espectroscopia de energia dispersiva. A rugosidade foi derivada de perfis topográficos adquiridos por perfilometria e microscopia de força atômica, enquanto a molhabilidade da superfície foi determinada através da técnica de gota séssil. De forma geral, os filmes depositados apresentaram contribuições de grupos orgânicos e de inorgânicos relacionados à alumina amorfa. O aumento da O2% afetou a cinética do plasma, proporcionando alterações na taxa de deposição (1 a 25 nm/min), rugosidade (1 a 13 nm) e redução na concentração de carbono proveniente do precursor, de 43% (O2% = 0%) para 6% (O2% = 100%). Com o aumento na O2% também foram encontradas variações na densidade dos filmes, dentro da faixa de 0,7 a 1,9 g/cm³, e tendência de queda no ângulo de contato de 53 para 17°. Por sua vez, quando o bombardeamento iônico é associado ao processo de deposição, altera-se a taxa de crescimento dos filmes (3 a 29 nm/min) e a morfologia da superfície, por meio do alívio de tensões internas e aumento da estabilidade física da estrutura resultante. A composição química não sofreu alterações, devido as condições do sputtering reativo permanecerem inalteradas nas deposições. Já a rugosidade e a molhabilidade da superfície apresentaram comportamentos condizentes com os resultados da morfologia e topografia. Quando condições mais energéticas de deposição foram empregadas, filmes óxidos com contaminações orgânicas foram obtidos para a deposição que empregou aquecimento resistivo do porta-amostras. Nesta condição, devido a redução na pressão total, mesmo com o aquecimento resistivo a taxa de deposição foi maior (~ 6 vezes) que aquela obtida sem aquecimento. Para a situação em que bombardeamento iônico de alta energia foi utilizado, estrutura e composição química similares ao do composto precursor foram obtidas. Os resultados são interpretados em termos dos processos predominantes em cada uma das metodologias empregadas. / Alumina films were deposited by a new plasma deposition method using aluminum acetylacetonate (AAA) powder as precursor. In a previous study by our group, the feasibility of AAA sputtering in argon plasmas for thin films deposition was demonstrated. The good results obtained stimulated the development of this work, aiming at the improvement of the deposition methodology. For this, the effects of modifications in the chemical composition of the plasma atmosphere were first investigated, through the use of different oxygen to argon proportions (O2%), making the process a reactive sputtering. The depositions were performed by spreading the AAA powder on the lower electrode of a capacitively coupled plasma system. Argon, oxygen or a mixture of both were admitted up to a pressure of 11.0 Pa. Application of radiofrequency power (13.56 MHz, 150 W) to the powder covered electrode generated the plasma, keeping the upper electrode, also used as a sample holder, grounded. Deposition times of 90 minutes were used. The effects of varying the oxygen proportion from 0 to 100%, on the film properties were studied. In the subsequent stage, films were deposited by reactive sputtering using the condition considered best in the last stage of the work (O2% = 25%) and keeping the pressures, power and treatment time constant. Instead of grounding the sample holder, however, negative rectangular pulses (600 V, 2 kHz, 1-100% duty cycle) were applied, promoting ion bombardment during the deposition by reactive sputtering. The influence of the pulse duty cycle on the properties of the films was evaluated. In the last study stage, films were deposited by reactive sputtering from atmospheres containing 25% O2 and 75% Ar and with more energetic conditions than those used in previous cycles. For such, a first samples set was prepared by resistive heating of the sample holder (410ºC) in a lower plasma pressure (4.0 Pa) than that previously used. The deposition time was 28 minutes. A second samples set was carried out associating ion bombardment of the highest energy, by the application of the 1200 V pulses (20% duty cycle) to the sample holder and also reducing the pressure of the deposition atmosphere to 4.0 Pa. In this condition, the deposition time was 60 minutes. The results obtained in these experiments were compared to the equivalent obtained previously. Film thickness was obtained by profilometry and the deposition rate calculated as the ratio between the thickness and deposition time. Elemental composition and molecular structure of the films were investigated using Rutherford backscattering and infrared absorption spectroscopy, respectively. X-ray diffraction was used to investigate the microstructure of the films. Surface morphology and chemical composition were studied using scanning electron microscopy and energy dispersive spectroscopy. Roughness was derived from topographic profiles acquired by profilometry and atomic force microscopy, whereas the surface wettability was determined using the sessile drop technique. In general, the deposited films showed contributions from organic and inorganic groups related to amorphous alumina. Increasing in O2% affected the plasma kinetics, providing changes in deposition rate (1 to 25 nm/min), roughness (1 to 13 nm) and reduction in the carbon concentration coming from the precursor, 43% (O2% = 0%) to 6% (O2% = 100%). With the increase in O2% it was also found variations in the films density, within the range from 0.7 to 1.9 g/cm³, and a downward trend in the contact angle of 53 to 17°. In turn, when the ion bombardment is associated with the deposition process, changes are found in the deposition rate (3 to 29 nm/min) and the surface morphology, through the internal strains relief and increased in the physical stability of resulting structure. The chemical composition did not suffer changes because the conditions of the reactive sputtering remain unchanged in the depositions. The roughness and surface wettability showed behavior consistent with the morphology and topography results. When more energetic conditions were employed, oxide films with organic contaminations were obtained for the deposition which applied the sample holder resistive heating. In this condition, due to the reduction in the total pressure, even with the resistive heating the deposition rate was higher (~ 6 times) than that obtained without heating. For the situation which high-energy ion bombardment was used, the structure and chemical composition similar to the precursor were obtained. The results are interpreted in terms of the prevailing processes in each of the methodologies applied.
17

Бесферментный электрохимический сенсор на основе органического комплекса никеля (II), полиэтиленимина и углеродных нанотрубок для определения глюкозы : магистерская диссертация / Enzyme-free electrochemical sensor based on organic complex of nickel (II), polyethyleneimine and carbon nanotubes for the determination of glucose

Степанова, В. В., Stepanova, V. V. January 2019 (has links)
Объектом исследования являлась глюкоза. Актуальность работы заключается в практическом применении бесферментных электрохимических сенсоров для контроля уровня глюкозы в крови при сахарном диабете. Цель работы: разработка бесферментного электрохимического сенсора для определения глюкозы с использованием органических комплексов никеля (II), в качестве чувствительных элементов, и самоорганизующихся слоев полимера с молекулярными отпечатками на основе полиэтиленимина, в качестве селективного элемента. Комплекс ацетилацетонат никеля (II) проявляет электрокаталитические свойства. С помощью полученного сенсора были проведены измерения глюкозы в модельных растворах, имитирующих сыворотку крови. Было выявлено отсутствие влияния посторонних соединений. Полученные ПМО обладают селективностью. Страниц 59, рисунков 47, таблиц 3, библиографических наименований 61. / The object of the study was glucose. The relevance of the work lies in the practical application of enzyme-free electrochemical sensors to control blood glucose levels in diabetes mellitus. Objective: to develop an enzyme-free electrochemical sensor for glucose determination using organic nickel (II) complexes, as sensitive elements, and self-assembled polymer layers with molecular prints based on polyethyleneimine, as a selective element. The nickel (II) acetylacetonate complex exhibits electrocatalytic properties. Using the obtained sensor, glucose was measured in model solutions simulating blood serum. It was revealed the absence of the influence of extraneous compounds. The resulting MIPs have selectivity.

Page generated in 0.0363 seconds