• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 275
  • 54
  • 10
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 400
  • 400
  • 400
  • 90
  • 84
  • 60
  • 60
  • 51
  • 48
  • 44
  • 43
  • 42
  • 39
  • 35
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
371

Micro-organisms involved in iron oxidation and acid mine drainage formation in KwaZulu-Natal and their control by soil covers on coal waste dumps

Modinger, Heinrich 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 1998. / One copy microfiche. / ENGLISH ABSTRACT: The biologically catalysed oxidation of pyrite in the outer layers of coal waste dumps leads to the formation of acid mine drainage. The oxidation of pyrite to ferric iron and sulphate is a complex process involving various abiotic and biologically catalysed reactions. Pyrite is abiotically oxidized by ferric iron, with the formation of thiosulphate and ferrous iron. Thiosulphate decomposes to form various inorganic sulphur compounds. Bacterial catalysis of pyrite oxidation is achieved by iron-oxidizing bacteria oxidizing ferrous iron to ferric iron. Bacteria that oxidize sulphur compounds assist the catalysis by oxidizing thiosulphate and its decomposition products. Heterotrophic organisms may play a role by consuming organic substances inhibitory to the lithotrophic bacteria. Abiotic ecological factors, acid formation and populations of iron-oxidizing bacterial groups were studied in 10 differently constructed pilot scale coal waste dumps, as the second phase of a study which started in September 1993. Gas samples were withdrawn weekly from coal waste through permanently buried stainless steel probes, for analysis in the field using a portable oxygen/carbon dioxide meter. Samples of coal waste were extracted by auger for analysis of moisture, pH and microbial populations. The analyses of oxygen and pH can be recommended for the routine monitoring of rehabilitated waste dumps. Covers of Avalon soil 0.3 or 0.5 m thick, were not adequate to prevent acidification. Coal waste covered with 0.7 m compacted beneath 0.3 m uncompacted Avalon soil, showed a slow pH decline, but reached approximately pH 3 in 1997. Covers of compacted Estcourt soil beneath tmcompacted Avalon soil to a cover depth of 1 m were effective in preventing acidification and generally kept the coal waste anaerobic. However, all covers developed cracks during drought conditions in 1995, allowing aeration. Low pH of some samples from these dumps during 1995/1996 may have indicated the start of acidification. Bacteria oxidizing high concentrations of ferrous iron and considered to be Thiobacillus ferrooxidans, were monitored routinely, but may not have been the dominant iron-oxidizer, as population counts using media with a lower ferrous iron concentration were higher. The majority of the latter organisms could also not oxidize sulphur, hence were not T. ferrooxidans. The populations of the high ferrous iron-oxidizing bacteria were affected by pH, tending to be high in acidified and low in non-acidified coal waste. Investigations of microbial populations forming iron-oxidizing consortia in enrichment cultures from coal waste and acid drainage samples showed the presence of T. ferrooxidans, the heterotrophic bacterial genus Acidiphilium, fungi of the genus Penicillium, unidentified filamentous fungi, including Cladophialophora-like morphological types, and a yeast of the genus Dipodascus. In interaction studies, the Penicillium isolate had an inhibitory effect on T. ferrooxidans (subjected to organic compound stress), but the Cladophialophora-like fungi reduced inhibition by organics. Fungi have not previously been studied in detail as components of iron-oxidizing consortia, but the bacterial isolations agree with those elsewhere, indicating that appropriate conclusions from acid mine drainage research in other parts of the world can be applied in KwaZulu-Natal. / AFRIKAANSE OPSOMMING: Die biologies gekataliseerde oksidasie van piriet in die buitenste lae van steenkoolafvalhope lei tot die vorming van suur mynafloopwater. Die oksidasie van piriet tot ferri-yster en sulfaat is 'n komplekse proses wat abiotiese en biologies gekataliseerde reaksies insluit. Piriet word abioties deur ferri-yster geoksideer, met die vrystelling van tiosulfaat en ferro-yster. Tiosulfaat verval om verskeie anorganiese swawelverbindings te vorm. Bakteriese katalise van pirietoksidasie word deur ysteroksiderende bakteriee wat ferro-yster na ferri-yster oksideer, bewerkstellig. Bakteriee wat swawelverbindings oksideer maak 'n bydrae tot die katalise deur tiosulfaat en vervalprodukte daarvan te oksideer. Heterotrofe organismes mag ook 'n rol speel deur organiese verbindings wat die litotrofe bakteriee mag inhibeer, te verbruik. Abiotiese ekologiese faktore, suurvorming en bevolkings ysteroksiderende bakteriee is in 10 verskillend gekonstrueerde loodsskaal steenkoolafvalhope bestudeer, as die tweede fase van 'n studie wat in September 1993 begin het. Gas monsters is weekliks uit die steenkoolafval onttrek deur vlekvrye staal peilers wat permanent daarin begrawe is, en met behulp van 'n draagbare suurstoflkoolstofdioksiedanaliseerder in die veld ontleed. Monsters van die steenkoolafval is met behulp van 'n kleiboor vir die analise van vog, pH en mikrobepopulasies geneem. Die analise van suurstof en pH kan aanbeveel word vir die roetiene monitering van gerehabiliteerde afvalhope. Bedekkings van 0.3 of 0.5 m Avalongrond was nie voldoende om suurvorming te verhoed nie. Steenkoolafval wat met 0.7 m gekompakteerde en 0.3 m ongekompakteerde Avalongrond bedek is, het 'n stadige pH-daling getoon, maar het in 1997 ongeveer pH 3 bereik. Bedekkings van gekompakteerde Estcourtgrond onder ongekompakteerde A valongrond met 'n totale dikte van 1 m, was effektief in die voorkoming van suurvorming. Hulle het oor die algemeen die steenkoolafval anaerobies gehou, maar aile bedekings het tydens die droogte in 1995 krake ontwikkel, wat suurstof laat binnedring het. 'n Lae pH gedurende 1995/1996 by sommige monsters uit hierdie hope mag die begin van suurvorming aangedui het. Bakteriee wat hoe konsentrasies ferro-yster oksideer en wat as Thiobacillus ferrooxidans beskou is, was moontlik nie die dominante ysteroksideerder nie, aangesien bevolkingstellings waar 'n medium met 'n laer konsentrasie ferro-yster gebruik is, hoer bevolkings getoon het. Die meerderheid van laasgenoemde organismes kon ook nie swawel benut nie en dus nie T. ferrooxidans was nie. Die bevolkings van die hoe ferro-ysteroksiderende bakteriee is deur pH beInvloed, met 'n geneigdheid tot hoe bevolkings in suur en lae bevolkings in minder suur steenkoolafval. Ondersoeke na die rnilcrobebevollcings wat in ysteroksiderende konsortia in verryldngslculture vanaf steenkoolafval- en suur mynafloopwatermonsters voorgekom het, het die teenwoordigheid van 7'. ferrooxidans, die heterotrofe balcteriegenus Acidiphilium, fungi van die genus Penicillium, ongeIdentifiseerde fungi, insluitend Cladophialophora-agtige tipes en 'n gis van die genus Dipodascus aangetoon. By interaksiestudies het die Penicillium-isolaat 'n inhiberende effek op T ferrooxidans (onderworpe aan organiese verbindingstres) gehad, maar die Cladophialophora-agtige fungi het die inhibisie deur organiese verbindings verminder. Fungi is nog the in detail as komponente van ysteroksiderende konsortia bestudeer the, maar die isolasies van bakteried stem saam met die van elders wat aandui dat toepaslike gevolgtreldcings ten opsigte van suur mynafloopwatemavorsing vanaf ander dele van die wereld ook in KwaZulu-Natal toegepas kan word.
372

The application of high capacity ion exchange absorbent material, synthesized from fly ash and acid mine drainage, for the removal of heavy and trace metals from secondary co-disposed process waters.

Hendricks, Nicolette Rebecca January 2005 (has links)
The objective of this study was to investigate the feasibility of the application of low cost high capacity inorganic ion exchange material, synthesized form collected fly ash and acid mine drainage solid residues, for the decontamination of secondary co-disposal process waters, with emphasis on investigating the processes governing the solid/solution interface.
373

Phase transformation and surface chemistry of secondary iron minerals formed from acid mine drainage

Jönsson, Jörgen January 2003 (has links)
The mining of sulphidic ore to extract metals such as zinc and copper produces huge quantities of waste material. The weathering and oxidation of the waste produces what is commonly known as Acid Mine Drainage (AMD), a dilute sulphuric acid rich in Fe(II) and heavy metals. This thesis serves to summarise five papers reporting how the precipitation of Fe(III) phases can attenuate the contamination of heavy metals by adsorption processes. Schwertmannite (Fe8O8(OH)6SO4) is a common Fe(III) mineral precipitating in AMD environments at pH 3-4. The stability and surface chemistry of this mineral was investigated. It was shown that the stability depended strongly on pH and temperature, an increase in either promoted transformation to goethite (α-FeOOH). Two pH dependent surface species of SO42- were detected with infrared (ATR-FTIR) spectroscopy. The adsorption of Cu(II), Pb(II) and Zn(II) to schwertmannite occurred at lower pH than to goethite, whereas Cd(II) adsorption occurred in a similar pH range on both schwertmannite and goethite. Extended x-ray absorption fine structure (EXAFS) spectroscopy suggests two surface species for Cu(II) and Cd(II) at the schwertmannite surface. Cu(II) adsorbs monodentately and Cd(II) bridging bidentately to adsorbed SO42-. Both metal ions also adsorb in a bridging bidentate mode to the surface hydroxyl groups. At pH 7.5 up to 2.7 μmol Cd(II) m-2 could be adsorbed to schwertmannite, indicating a large adsorption capacity for this mineral. The acid-base properties of two NOM samples were characterised and could be well described as diprotic acids below pH 6. The adsorption of NOM to schwertmannite and goethite was very similar and adsorption occured in a very wide pH range. High concentrations of NOM increased the adsorption of Cu(II) to goethite at low pH whereas a slight decrease was noted at low concentrations of NOM. No effect was detected in the schwertmannite system. The formation of Fe(III) phases from precipitation of AMD was shown to be very pH dependent. At pH 5.5 a mixture of minerals, including schwertmannite, formed whereas at pH 7 only lepidocrocite (γ-FeOOH) formed. The concentration of Zn(II) in AMD could by adsorption/coprecipitation be reduced to environmentally acceptable levels.
374

Potencial do reator anaeróbio de leito fixo-estruturado e fluxo descendente para o tratamento de drenagem ácida de minas em co-digestão com vinhaça / Down-flow fixed-structured bed anaerobic reactor potential for acid mine drainage treatment in co-digestion with vinasse

Godoi, Leandro Augusto Gouvêa de 14 May 2018 (has links)
No presente trabalho foi avaliado o potencial do reator anaeróbio de leito fixo-estruturado e fluxo descendente (down-flow fixed strucutured bed reactor – DFSBR) para o tratamento de drenagens ácidas de minas (DAM) com vistas à recuperação de metais. Vinhaça de cana-de-açúcar foi utilizada como doador de elétrons para bactérias redutoras de sulfato (BRS) e ferro (Fe2+) foi adicionado como metal de referência. Em associação com a sulfetogênese, produção de metano foi promovida pela relação DQO/SO42- de 2,0, maior que a relação estequiométrica de oxidação da matéria orgânica via redução de SO42- (0,67). Concentrações afluentes de DQO e SO42- da ordem de 4000 mg.L-1 e 2000 mg.L-1, respectivamente, foram mantidas durante todo o período experimental (547 dias), sendo o reator operado com TDH de 20 h. Durante a ETAPA 1 (277 dias) o DFSBR foi alimentado com substrato sintético simulando a fração solúvel da vinhaça e recebeu cargas crescentes de ferro (0,07 a 0,51 g Fe2+.L-1.d-1) para avaliação do potencial de remoção de metais. Foram obtidas eficiências de remoção de DQO e SO42- de 94±2% e 97±3%, respectivamente. Remoção de ferro de 95±5% foi alcançada, assim como proporções crescentes de ferro (de até 55%) nas cinzas do precipitado. Ao longo da ETAPA 2 (100 dias) vinhaça foi utilizada como único doador de elétrons e diferentes razões de recirculação foram estudadas (0, 50, 100 e 150 vezes), com velocidades superficiais do escoamento variando de 0,03 a 5,20 m.h-1. A eficiência de remoção de DQO de 82±6% foi atribuída à presença de compostos recalcitrantes na vinhaça, ao passo que a remoção de SO42- permaneceu próxima da alcançada na ETAPA 1 (95±5%). Uma produção volumétrica de metano da ordem de 390 mL CH4.L-1.d-1 foi obtida (CNTP). A despeito da variação nas taxas de reciclo, maior estabilidade e eficiência de remoção de ferro (96±3%) foram determinadas na ausência de recirculação, com ganhos econômicos para o processo. Durante a ETAPA 3 (170 dias) a diminuição gradativa do pH afluente de 6,30 para 3,50 foi realizada. Apesar da supressão de alcalinidade, o sistema atingiu eficiências de remoção de SO42- de 97±1% e remoção de ferro de 95±4%. Foram observados efeitos adversos sobre o metabolismo metanogênico, com queda na produção de metano de 380 para 230 mL CH4.L-1.d-1, acompanhada por aumento da DQO residual no efluente (1500 mg DQO.L-1). Ainda assim, o DSFBR foi capaz de elevar o pH da água residuária de 3,5 para 6,9, confirmando o potencial do sistema para a neutralização de DAM. A caracterização da comunidade microbiana por análise do sequenciamento do gene RNAr 16S indicou predominância dos gêneros Desulfovibrio e Methanosaeta, comprovando o estabelecimento simultâneo dos processos sulfetogênicos e metanogênicos. Por fim, os resultados apontaram perspectivas promissoras de aplicação do DFSBR ao tratamento de DAM via redução de SO42- favorecendo a precipitação e separação de metais em reator de único estágio. A vinhaça de cana-de-açúcar também se mostrou um adequado doador de elétrons para o processo. / This work evaluated the potential of the down-flow fixed-structured bed anaerobic reactor (DFSBR) for the treatment of acid mine drainage (AMD) aiming at metals recovery. Sugarcane vinasse was used as electron donor for sulfate-reducing bacteria (BRS) and iron (Fe2+) was added as reference metal. In association with sulfidogenesis, methane production was promoted by the applied COD/SO42- ratio of 2.0, which is higher than the stoichiometric ratio for organic matter oxidation solely by SO42- reduction (0.67). Affluent concentrations of COD and SO42- were kept close to 4000 mg.L-1 and 2000 mg.L-1, respectively, over the entire experimental time (547 days). The reactor was operated with HRT of 20 h. During STAGE 1 (277 days) the DFSBR was fed with synthetic substrate simulating the soluble fraction of vinasse and received increasing iron loads (0.07 to 0.51 g Fe2+.L-1.d-1) to verify the potential for metal removal. COD and SO42- removal efficiencies were 94±2% and 97±3%, respectively. Iron removal of 95±5% was achieved, as well as increasing proportions of iron (up to 55%) were observed in the ashes of precipitate. Throughout STAGE 2 (100 days) sugarcane vinasse was used as unique electron donor whereas different recirculation ratios were studied (0, 50, 100 and 150 times), with superficial flow velocities ranging from 0.03 to 5.20 m-1. COD removal efficiency of 82±6% was attributed to the presence of recalcitrant compounds in the vinasse, while the removal of SO42- remained close to that previously achieved during STAGE 1 (95±5%). Volumetric methane production near of 390 mL CH4.L-1.d-1 was obtained (STP). Although the variation in the recycle rates, greater stability and efficiency of iron removal (96±3%) were determined in the absence of recirculation, with economic gains for the process. During the STAGE 3 (170 days) gradual decrease of the pH affluent from 6.30 to 3.50 was performed. Despite the alkalinity suppression, the system achieved SO42- removal efficiencies of 97±1% and iron removal close to 95±4%. Adverse effects over methanogenic metabolism were observed once methane production decreased from 380 to 230 mL CH4.L-1.d-1, which was followed by a residual COD increase in the effluent (1500 mg COD.L-1). Nevertheless, the DSFBR was able to raise the pH of the wastewater from 3.5 to 6.9, indicating the potential of such system for AMD neutralization. 16S rRNA gene sequencing analysis for microbial community characterization showed predominance of the genera Desulfovibrio and Methanosaeta, confirming the simultaneous establishment of sulfidogenic and methanogenic processes. Finally, the results presented promising perspectives for the DFSBR application to the AMD treatment via SO42- reduction, also favoring metals precipitation and separation in a single-stage reactor. Sugarcane vinasse was also considered a suitable electron donor for the process.
375

Phase transformation and surface chemistry of secondary iron minerals formed from acid mine drainage

Jönsson, Jörgen January 2003 (has links)
<p>The mining of sulphidic ore to extract metals such as zinc and copper produces huge quantities of waste material. The weathering and oxidation of the waste produces what is commonly known as Acid Mine Drainage (AMD), a dilute sulphuric acid rich in Fe(II) and heavy metals. This thesis serves to summarise five papers reporting how the precipitation of Fe(III) phases can attenuate the contamination of heavy metals by adsorption processes. </p><p>Schwertmannite (Fe8O8(OH)6SO4) is a common Fe(III) mineral precipitating in AMD environments at pH 3-4. The stability and surface chemistry of this mineral was investigated. It was shown that the stability depended strongly on pH and temperature, an increase in either promoted transformation to goethite (α-FeOOH). Two pH dependent surface species of SO42- were detected with infrared (ATR-FTIR) spectroscopy.</p><p>The adsorption of Cu(II), Pb(II) and Zn(II) to schwertmannite occurred at lower pH than to goethite, whereas Cd(II) adsorption occurred in a similar pH range on both schwertmannite and goethite. Extended x-ray absorption fine structure (EXAFS) spectroscopy suggests two surface species for Cu(II) and Cd(II) at the schwertmannite surface. Cu(II) adsorbs monodentately and Cd(II) bridging bidentately to adsorbed SO42-. Both metal ions also adsorb in a bridging bidentate mode to the surface hydroxyl groups. At pH 7.5 up to 2.7 μmol Cd(II) m-2 could be adsorbed to schwertmannite, indicating a large adsorption capacity for this mineral.</p><p>The acid-base properties of two NOM samples were characterised and could be well described as diprotic acids below pH 6. The adsorption of NOM to schwertmannite and goethite was very similar and adsorption occured in a very wide pH range.</p><p>High concentrations of NOM increased the adsorption of Cu(II) to goethite at low pH whereas a slight decrease was noted at low concentrations of NOM. No effect was detected in the schwertmannite system. </p><p>The formation of Fe(III) phases from precipitation of AMD was shown to be very pH dependent. At pH 5.5 a mixture of minerals, including schwertmannite, formed whereas at pH 7 only lepidocrocite (γ-FeOOH) formed. The concentration of Zn(II) in AMD could by adsorption/coprecipitation be reduced to environmentally acceptable levels.</p>
376

The application of high capacity ion exchange adsorbent material, synthesized from fly ash and acid mine drainage, for the removal of heavy and trace metal from secondary Co-disposal process waters

Hendricks, Nicolette Rebecca January 2005 (has links)
In South Africa, being the second largest global coal exporter, coal mining plays a pivotal role in the growth of our economy, as well as supplying our nation’s ever increasing electricity needs; while also accounting for more than 10% of the 20 x 109 m3 water used annually in the country. Coal mining may thus be classified as a large-scale water user; known to inevitably generate wastewater [acid mine drainage (AMD)] and other waste material, including fly ash (FA). Current and conventional AMD treatment technologies include precipitation–aggregation (coagulation/flocculation) – settling as hydroxides or insoluble salts. The process stream resulting from these precipitation processes is still highly saline, therefore has to undergo secondary treatment. The best available desalination techniques include reverse osmosis (RO), electro dialysis (ED), ion exchange and evaporation. All available treatment methods associated with raw AMD and its derived process stream fall prey to numerous drawbacks. The result is that treatment is just as costly as the actual coal extraction. In addition, remediation only slows the problem down, while also having a short lifespan. Research conducted into converting fly ash, an otherwise waste material, into a marketable commodity has shown that direct mixing of known ratios of FA with AMD to a pre-determined pH, erves a dual purpose: the two wastes (AMD and FA) could be neutralized and produced a much cleaner water (secondary co-disposal [FA/AMD]-process water), broadly comparable to the process water derived from precipitation-aggregation treated AMD. The collected post process solid residues on the other hand, could be used for production of high capacity ion exchange material (e.g. zeolite A, faujasite, zeolite P, etc.). The produced ion exchange material can subsequently be utilized for the attenuation of metal species in neutralized FA/AMDprocess waters. / Magister Scientiae - MSc
377

A holistic view on the impact of gold and uranium mining on the Wonderfonteinspruit / David Hamman

Hamman, David January 2012 (has links)
The Wonderfonteinspruit (WFS) flows through the richest gold mining region in the world and has subsequently been exposed to the related pollution for more than a century. In order to determine the extent of mining related pollution in the WFS, sediment, water, soil, grass and cattle tissue samples were collected, analysed and compared from an experimental group and a control group. This study identified cobalt, nickel, zinc, selenium, cadmium, gold, lead and uranium as elements of interest by comparing sediment samples from the WFS and the Mooi River (MR) (which served as a control or background site). The cobalt concentration was found to be 16.37 times higher, the nickel concentration was 30.4 times higher, the copper concentration was 3.59 times higher, the zinc concentration was 103.49 times higher, the selenium concentration was 7.14 times higher, the cadmium concentration was 17.88 times higher, the gold concentration was 4.78 times higher, the lead concentration was 1.32 times higher and the uranium concentration was 375.78 times higher in the initial comparison with sediments from the MR. These results were all found to be significant. All these elements are by products of non-ferrous mining activities as was described in the literature review. The elevated concentrations of these elements, which were found in the streambed sediment of a site in the Lower-Wonderfonteinspruit, suggest that they could have resulted due to upstream gold mining activities. These gold mining activities were initiated more than a century ago and continue to this day. Analysis of the different particle size fractions (sand, silt and clay fractions) revealed that the highest elemental concentrations were found in the clay sized fractions. The clay sized fraction usually contains secondary soil minerals which have the ability to adsorb dissolved cations onto their surface areas. Further analysis revealed that the sand fraction of the WFS sediment contained a substantial concentration of cobalt, nickel, copper, zinc, lead and uranium which, upon initial inspection could not be explained. X-Ray Diffraction (XRD) analysis revealed that more than 90 % of the WFS sand, silt and clay fractions consisted of quartz, which was much higher than that of the MR. Due to the particle size of quartz, it generally dominates the sand and silt fractions, and finding it at levels above 90 % in the clay sized fraction is thought to be highly irregular. This could be explained by the extraction and processing of gold reefs from the goldfields in the catchment. The gold reefs consisted of quartz veins that were milled to a fine dust and pumped onto slime and sand dumps after the gold was extracted. The most abundant ore minerals found within these dumps were uraninite(UO2), brannerite (UO3Ti2O4), arsenopyrite (FeAsS), cobaltite (CoAsS), galena (PbS), pyrrhotite (FeS), gersdofite (NiAsS) and chromite (FeCr2O4), which contain some of the elements of interest. These dumps are either located in close proximity to the WFS or connected to the WFs via canals or pipelines. Erosion of these dumps would then introduce this finely milled quartz into the stream system. Therefore, the elements found in the sediment of the WFS were not only introduced to the system in the dissolved form, but also in the particulate form. The water samples that were collected from the experimental site (WFS) were found to exceed the cobalt, nickel, copper, zinc, selenium and cadmium concentrations ranges which are normally found in natural waters. In addition to this, the cadmium, lead and nickel concentration in the WFS water samples were found to occasionally exceed the target water quality ranges for livestock water as set by DWAF (1996). Water samples that were collected from the control group were found to exceed only the selenium concentration found in natural water sources as found by Crittenden et al., (2005). Cattle in the experimental group drink directly from the WFS and may stir up the sediment and thereby increasing the elemental concentrations within the water prior to ingestion. The target water quality ranges (TWQR) for livestock watering, as set by DWAF 1996, were exceeded by the average nickel and lead concentrations found in the disturbed WFS water samples. Although the elemental concentrations in the respective water samples were fairly low there was a definite practical significant difference between the WFS water and the MR water samples, as well as the disturbed WFS water and the MR water samples. The WFS water quality seemed to have a very large standard deviation which could serve as an indication that the elemental concentrations are highly variable over time. The elemental concentrations that were found in soil samples from the respective sites were compared to elemental concentrations found in normal agricultural soil as presented by Bergman (1992), which revealed the following results. The cobalt concentrations in the soil samples from the soil along WFS site, soil along MR site and irrigation MR site exceeded the agricultural threshold value. The nickel concentrations in the soil samples from the soil along WFS site, soil along MR site, wetland WFS and irrigation MR site exceeded the agricultural threshold value. The zinc concentrations in the soil samples from the soil along WFS site exceeded the agricultural threshold value. Copper, selenium, cadmium and lead concentrations did not exceed the agricultural threshold values in any of the respective sites. The agricultural threshold value for uranium concentrations was exceeded in the soil samples from the soil along the WFS site and the wetland WFS site. The comparison between the elemental concentrations that were found in the soil samples from the irrigated soil WFS site and the irrigated soil MR site revealed a practically significant difference for the copper, zinc and uranium concentrations. The comparison between the elemental concentrations found in soil samples from the soil along the WFS site and the soil along the MR site revealed a practically significant difference for all elements of interest. The analysis of the elemental concentration in the different particle size fractions of soil samples from all the sites (excluding the irrigated pastures) displayed highest elemental concentrations in the clay sized fraction. The elemental concentrations that were found in this fraction are generally considered to be available for plant uptake, as most of them are usually bound to the surface of secondary soil minerals. The sites with the highest concentration of plant available elements were found to be the soil along WFS site and the wetland WFS site. The elemental concentrations found in the grass samples from the respective sampling sites were compared to elemental concentrations that are normally found in grass pastures (Underwood & Suttle, 2001). The cobalt, nickel, copper and concentrations that were found in the grass samples from most of the sites in both the control and experimental groups were all found to exceed the concentration ranges found in natural pastures. The cadmium and zinc concentrations in the grass samples from the soil along WFS site were found to exceed the respective concentration ranges found in natural pastures. The normal uranium concentration found in irrigated or natural grasses could not be found in an extensive search. Dreesen et al. (1982) reported 0.16 mg/kg uranium in grasses and 1.8 mg/kg uranium in shrubs that grew on soil-covered tailings material. All the sites in the experimental group, including the control WFS site, drastically exceeded these concentrations, which may suggest that the grasses in the experimental sites have been exposed to elevated uranium concentrations. The grass samples with the highest average elemental concentrations were found in the soil along WFS site and irrigated soil WFS site. Lead was to be the only element of interest to have the highest concentration in grass samples from the irrigated soil WFS site. The irrigated soil WFS site portrayed significant transfer factors for nickel, copper, zinc, lead and uranium. This could serve as an indication that the grasses under irrigation in the WFS site absorb and accumulate the highest concentration of elements in respect to the soil concentrations found in the various sites. Therefore, the irrigation from the WFS has a profound effect on the nickel, copper, zinc, lead and uranium concentration in the grass samples under irrigation. The results obtained from the comparative analysis of the elemental concentration in grass samples from the irrigation WFS and irrigation MR sites revealed that all elemental concentrations except for that of zinc had a difference that was practically significant, with the uranium concentration having the largest effect size. The results obtained from the comparative analysis of the elemental concentration in grass samples from the soil along WFS and soil along MR sites revealed that all elemental concentrations had a difference that was practically significant uranium, nickel and zinc concentrations having the largest effect sizes. Considering that a large effect size is achieved at a value equal to or greater than 0.8, the uranium concentration therefore had a massive difference in both comparisons. The results obtained from the comparative analysis of the elemental concentration in grass samples from the wetland WFS and control WFS sites revealed that only the cobalt, nickel and uranium concentrations had differences that were practically significant, with the cobalt concentration having the largest effect size. The results obtained from the comparative analysis of the elemental concentration in the grass samples from the soil along WFS and control WFS sites revealed that all the elemental concentrations except for the lead concentration had a difference that was practically significant. The cobalt, nickel and zinc had the largest effect sizes. The elemental concentrations that were found in cattle liver, kidney and muscle tissue samples from both the experimental and control groups were compared to elemental concentrations normally found in cattle samples as found in Pulse (1994), ATSDR (2004), and ATSDR (2011). This comparison revealed the following results: The nickel, cadmium and lead concentration that were found in the cattle liver, kidney and muscle tissue samples from both the experimental and control groups were found to be within the ranges normally found in cattle. Cobalt concentrations found in the liver and muscle tissue samples of cattle from both the experimental and control groups exceeded the normal ranges, and the cobalt concentrations found in the kidney samples from the experimental group exceeded the normal range. The copper concentration found in the kidney samples from the cattle in the experimental group exceeded that of the normal concentration range. The zinc concentration found in the liver and kidney samples in the cattle from the experimental group, and the kidney samples from the cattle in the control group exceeded the normal range. The selenium concentration found in the liver, kidney and muscle tissue samples in the cattle from the experimental group, and the kidney samples from the cattle in the control group exceeded the normal range. The uranium concentration found in the liver, kidney and muscle tissue samples in the cattle from the experimental group exceeded the normal range. The comparison between cattle tissue samples from the experimental and control group revealed that nickel, zinc, selenium, lead and uranium concentrations all reveal a practically significant difference. Uranium, nickel and lead portrayed the largest differences between the two groups. The uranium concentration in the cattle samples from the experimental group was 126.75 times higher in the liver, 4350 times higher in the kidney, 47.75 times higher in the spleen, 31.6 times higher in the muscle tissue, 60 times higher in the bone and 129 times higher in the hair than that of the cattle samples from the control group. In addition to this, the uranium did not only accumulate in the predicted tissue samples (bone, liver and kidney), but also in the muscle tissue samples. The nickel concentrations in the cattle samples were all found to be higher in the experimental group, with liver 1.4 times higher, kidney 387.5 times higher, spleen 2.1 times higher, muscle tissue 2.8 times higher, bone 167.5 times higher and hair 76.5 times higher than that of the cattle samples from the control group. The lead concentrations found in the cattle samples from the experimental group were found to be 3.8 times higher in the liver, 17.3 times higher in the kidney, 3.3 times higher in the spleen, 3.2 times higher in the muscle tissue, 9 times higher in the bone and 12.2 times higher in the hair than the cattle samples from the control group. Furthermore, the study revealed that the major route of ingestion for all the elements of interest, excluding nickel and cobalt was via the ingestion of grass. The major route for nickel and cobalt ingestion was via soil ingestion. The elemental concentrations from water ingestion were found to be a less significant. It was shown that a predictive cattle consumption model was developed and calibrated from data gathered from a control and experimental group. Animal matter analysed for both groups were related to the cattle age of six years. Although good correlation between observed and simulated values was achieved, the exiting model fit is non-unique. To obtain a more precise model fit a similar dataset is required for both groups, but at a different age. The predictive model also showed that if only grass were to be used as input, there were no significant changes in the correlation between observed and simulated values. This has a huge advantage in terms of costs associated with laboratory analyses as the analysis of grass will be sufficient for using the model. A human health risk assessment was performed based on the results of the cattle consumption model. It was shown that no toxic risk exits for both the control and experimental groups if an intake rate of 0.13 kg of meat per day was assumed. Furthermore, Figure 6-11 clearly indicates that an intake rate of up to 0.38 kg of meat per day also has no toxic risk for both groups, which strongly suggests that there is no risk to the human food chain. The cattle grazing in the WFS appear to be in a good physical condition and according to the farmer; the reproduction rate is at desirable levels. Good farming practices would have also played a significant role to achieve this. / Thesis (MSc (Environmental Sciences))--North-West University, Potchefstroom Campus, 2012.
378

A holistic view on the impact of gold and uranium mining on the Wonderfonteinspruit / David Hamman

Hamman, David January 2012 (has links)
The Wonderfonteinspruit (WFS) flows through the richest gold mining region in the world and has subsequently been exposed to the related pollution for more than a century. In order to determine the extent of mining related pollution in the WFS, sediment, water, soil, grass and cattle tissue samples were collected, analysed and compared from an experimental group and a control group. This study identified cobalt, nickel, zinc, selenium, cadmium, gold, lead and uranium as elements of interest by comparing sediment samples from the WFS and the Mooi River (MR) (which served as a control or background site). The cobalt concentration was found to be 16.37 times higher, the nickel concentration was 30.4 times higher, the copper concentration was 3.59 times higher, the zinc concentration was 103.49 times higher, the selenium concentration was 7.14 times higher, the cadmium concentration was 17.88 times higher, the gold concentration was 4.78 times higher, the lead concentration was 1.32 times higher and the uranium concentration was 375.78 times higher in the initial comparison with sediments from the MR. These results were all found to be significant. All these elements are by products of non-ferrous mining activities as was described in the literature review. The elevated concentrations of these elements, which were found in the streambed sediment of a site in the Lower-Wonderfonteinspruit, suggest that they could have resulted due to upstream gold mining activities. These gold mining activities were initiated more than a century ago and continue to this day. Analysis of the different particle size fractions (sand, silt and clay fractions) revealed that the highest elemental concentrations were found in the clay sized fractions. The clay sized fraction usually contains secondary soil minerals which have the ability to adsorb dissolved cations onto their surface areas. Further analysis revealed that the sand fraction of the WFS sediment contained a substantial concentration of cobalt, nickel, copper, zinc, lead and uranium which, upon initial inspection could not be explained. X-Ray Diffraction (XRD) analysis revealed that more than 90 % of the WFS sand, silt and clay fractions consisted of quartz, which was much higher than that of the MR. Due to the particle size of quartz, it generally dominates the sand and silt fractions, and finding it at levels above 90 % in the clay sized fraction is thought to be highly irregular. This could be explained by the extraction and processing of gold reefs from the goldfields in the catchment. The gold reefs consisted of quartz veins that were milled to a fine dust and pumped onto slime and sand dumps after the gold was extracted. The most abundant ore minerals found within these dumps were uraninite(UO2), brannerite (UO3Ti2O4), arsenopyrite (FeAsS), cobaltite (CoAsS), galena (PbS), pyrrhotite (FeS), gersdofite (NiAsS) and chromite (FeCr2O4), which contain some of the elements of interest. These dumps are either located in close proximity to the WFS or connected to the WFs via canals or pipelines. Erosion of these dumps would then introduce this finely milled quartz into the stream system. Therefore, the elements found in the sediment of the WFS were not only introduced to the system in the dissolved form, but also in the particulate form. The water samples that were collected from the experimental site (WFS) were found to exceed the cobalt, nickel, copper, zinc, selenium and cadmium concentrations ranges which are normally found in natural waters. In addition to this, the cadmium, lead and nickel concentration in the WFS water samples were found to occasionally exceed the target water quality ranges for livestock water as set by DWAF (1996). Water samples that were collected from the control group were found to exceed only the selenium concentration found in natural water sources as found by Crittenden et al., (2005). Cattle in the experimental group drink directly from the WFS and may stir up the sediment and thereby increasing the elemental concentrations within the water prior to ingestion. The target water quality ranges (TWQR) for livestock watering, as set by DWAF 1996, were exceeded by the average nickel and lead concentrations found in the disturbed WFS water samples. Although the elemental concentrations in the respective water samples were fairly low there was a definite practical significant difference between the WFS water and the MR water samples, as well as the disturbed WFS water and the MR water samples. The WFS water quality seemed to have a very large standard deviation which could serve as an indication that the elemental concentrations are highly variable over time. The elemental concentrations that were found in soil samples from the respective sites were compared to elemental concentrations found in normal agricultural soil as presented by Bergman (1992), which revealed the following results. The cobalt concentrations in the soil samples from the soil along WFS site, soil along MR site and irrigation MR site exceeded the agricultural threshold value. The nickel concentrations in the soil samples from the soil along WFS site, soil along MR site, wetland WFS and irrigation MR site exceeded the agricultural threshold value. The zinc concentrations in the soil samples from the soil along WFS site exceeded the agricultural threshold value. Copper, selenium, cadmium and lead concentrations did not exceed the agricultural threshold values in any of the respective sites. The agricultural threshold value for uranium concentrations was exceeded in the soil samples from the soil along the WFS site and the wetland WFS site. The comparison between the elemental concentrations that were found in the soil samples from the irrigated soil WFS site and the irrigated soil MR site revealed a practically significant difference for the copper, zinc and uranium concentrations. The comparison between the elemental concentrations found in soil samples from the soil along the WFS site and the soil along the MR site revealed a practically significant difference for all elements of interest. The analysis of the elemental concentration in the different particle size fractions of soil samples from all the sites (excluding the irrigated pastures) displayed highest elemental concentrations in the clay sized fraction. The elemental concentrations that were found in this fraction are generally considered to be available for plant uptake, as most of them are usually bound to the surface of secondary soil minerals. The sites with the highest concentration of plant available elements were found to be the soil along WFS site and the wetland WFS site. The elemental concentrations found in the grass samples from the respective sampling sites were compared to elemental concentrations that are normally found in grass pastures (Underwood & Suttle, 2001). The cobalt, nickel, copper and concentrations that were found in the grass samples from most of the sites in both the control and experimental groups were all found to exceed the concentration ranges found in natural pastures. The cadmium and zinc concentrations in the grass samples from the soil along WFS site were found to exceed the respective concentration ranges found in natural pastures. The normal uranium concentration found in irrigated or natural grasses could not be found in an extensive search. Dreesen et al. (1982) reported 0.16 mg/kg uranium in grasses and 1.8 mg/kg uranium in shrubs that grew on soil-covered tailings material. All the sites in the experimental group, including the control WFS site, drastically exceeded these concentrations, which may suggest that the grasses in the experimental sites have been exposed to elevated uranium concentrations. The grass samples with the highest average elemental concentrations were found in the soil along WFS site and irrigated soil WFS site. Lead was to be the only element of interest to have the highest concentration in grass samples from the irrigated soil WFS site. The irrigated soil WFS site portrayed significant transfer factors for nickel, copper, zinc, lead and uranium. This could serve as an indication that the grasses under irrigation in the WFS site absorb and accumulate the highest concentration of elements in respect to the soil concentrations found in the various sites. Therefore, the irrigation from the WFS has a profound effect on the nickel, copper, zinc, lead and uranium concentration in the grass samples under irrigation. The results obtained from the comparative analysis of the elemental concentration in grass samples from the irrigation WFS and irrigation MR sites revealed that all elemental concentrations except for that of zinc had a difference that was practically significant, with the uranium concentration having the largest effect size. The results obtained from the comparative analysis of the elemental concentration in grass samples from the soil along WFS and soil along MR sites revealed that all elemental concentrations had a difference that was practically significant uranium, nickel and zinc concentrations having the largest effect sizes. Considering that a large effect size is achieved at a value equal to or greater than 0.8, the uranium concentration therefore had a massive difference in both comparisons. The results obtained from the comparative analysis of the elemental concentration in grass samples from the wetland WFS and control WFS sites revealed that only the cobalt, nickel and uranium concentrations had differences that were practically significant, with the cobalt concentration having the largest effect size. The results obtained from the comparative analysis of the elemental concentration in the grass samples from the soil along WFS and control WFS sites revealed that all the elemental concentrations except for the lead concentration had a difference that was practically significant. The cobalt, nickel and zinc had the largest effect sizes. The elemental concentrations that were found in cattle liver, kidney and muscle tissue samples from both the experimental and control groups were compared to elemental concentrations normally found in cattle samples as found in Pulse (1994), ATSDR (2004), and ATSDR (2011). This comparison revealed the following results: The nickel, cadmium and lead concentration that were found in the cattle liver, kidney and muscle tissue samples from both the experimental and control groups were found to be within the ranges normally found in cattle. Cobalt concentrations found in the liver and muscle tissue samples of cattle from both the experimental and control groups exceeded the normal ranges, and the cobalt concentrations found in the kidney samples from the experimental group exceeded the normal range. The copper concentration found in the kidney samples from the cattle in the experimental group exceeded that of the normal concentration range. The zinc concentration found in the liver and kidney samples in the cattle from the experimental group, and the kidney samples from the cattle in the control group exceeded the normal range. The selenium concentration found in the liver, kidney and muscle tissue samples in the cattle from the experimental group, and the kidney samples from the cattle in the control group exceeded the normal range. The uranium concentration found in the liver, kidney and muscle tissue samples in the cattle from the experimental group exceeded the normal range. The comparison between cattle tissue samples from the experimental and control group revealed that nickel, zinc, selenium, lead and uranium concentrations all reveal a practically significant difference. Uranium, nickel and lead portrayed the largest differences between the two groups. The uranium concentration in the cattle samples from the experimental group was 126.75 times higher in the liver, 4350 times higher in the kidney, 47.75 times higher in the spleen, 31.6 times higher in the muscle tissue, 60 times higher in the bone and 129 times higher in the hair than that of the cattle samples from the control group. In addition to this, the uranium did not only accumulate in the predicted tissue samples (bone, liver and kidney), but also in the muscle tissue samples. The nickel concentrations in the cattle samples were all found to be higher in the experimental group, with liver 1.4 times higher, kidney 387.5 times higher, spleen 2.1 times higher, muscle tissue 2.8 times higher, bone 167.5 times higher and hair 76.5 times higher than that of the cattle samples from the control group. The lead concentrations found in the cattle samples from the experimental group were found to be 3.8 times higher in the liver, 17.3 times higher in the kidney, 3.3 times higher in the spleen, 3.2 times higher in the muscle tissue, 9 times higher in the bone and 12.2 times higher in the hair than the cattle samples from the control group. Furthermore, the study revealed that the major route of ingestion for all the elements of interest, excluding nickel and cobalt was via the ingestion of grass. The major route for nickel and cobalt ingestion was via soil ingestion. The elemental concentrations from water ingestion were found to be a less significant. It was shown that a predictive cattle consumption model was developed and calibrated from data gathered from a control and experimental group. Animal matter analysed for both groups were related to the cattle age of six years. Although good correlation between observed and simulated values was achieved, the exiting model fit is non-unique. To obtain a more precise model fit a similar dataset is required for both groups, but at a different age. The predictive model also showed that if only grass were to be used as input, there were no significant changes in the correlation between observed and simulated values. This has a huge advantage in terms of costs associated with laboratory analyses as the analysis of grass will be sufficient for using the model. A human health risk assessment was performed based on the results of the cattle consumption model. It was shown that no toxic risk exits for both the control and experimental groups if an intake rate of 0.13 kg of meat per day was assumed. Furthermore, Figure 6-11 clearly indicates that an intake rate of up to 0.38 kg of meat per day also has no toxic risk for both groups, which strongly suggests that there is no risk to the human food chain. The cattle grazing in the WFS appear to be in a good physical condition and according to the farmer; the reproduction rate is at desirable levels. Good farming practices would have also played a significant role to achieve this. / Thesis (MSc (Environmental Sciences))--North-West University, Potchefstroom Campus, 2012.
379

The application of high capacity ion exchange absorbent material, synthesized from fly ash and acid mine drainage, for the removal of heavy and trace metals from secondary co-disposed process waters.

Hendricks, Nicolette Rebecca January 2005 (has links)
The objective of this study was to investigate the feasibility of the application of low cost high capacity inorganic ion exchange material, synthesized form collected fly ash and acid mine drainage solid residues, for the decontamination of secondary co-disposal process waters, with emphasis on investigating the processes governing the solid/solution interface.
380

An evaluation of the cumulative surface water pollution within the consolidated main reef area, Roodepoort, South Africa

Muruven, Dean Nalandhren 08 1900 (has links)
Surface water pollution is prevalent in numerous areas of central Roodepoort mainly due to gold mining activities. The surface water quality for the Bosmontspruit, Russell’s Stream and the New Canada Dam was assessed from October 2010 to March 2011. Physical, chemical and biological characteristics of the water were determined for 8 monitoring points and the results obtained were compared with the In-stream water quality guidelines for the Klip River catchment and the South African Water Quality Guidelines. A trend noticed throughout the sampling period was the non-compliance in the levels of total dissolved solids (TDS) and dissolved oxygen. The results indicated that concentrations of iron, aluminium, nickel, manganese and potassium were above the limit across the Bosmontspruit and Russell’s stream. There was also significant evidence of excessive faecal coliform and ammonium pollution in the Bosmontspruit. During the monitoring period it was noted that water from these streams were utilised for crop irrigation, bathing, livestock and human consumption and may pose a health hazard due to poor water quality. / Environmental Sciences / M.Sc. (Environmental Science)

Page generated in 0.0615 seconds