• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Potentiel de la formulation EPA/DHA 6/1 à prévenir la dysfonction endothéliale et le remodelage cardiopulmonaire dans l’hypertension artérielle pulmonaire chez le rat / Potential of the EPA/DHA 6/1 formulation to prevent endothelial dysfunction and cardiopulmonary remodeling in pulmonary arterial hypertension in rats

Amissi, Said 19 September 2016 (has links)
L’hypertension artérielle pulmonaire (HTAP) est une pathologie affectant les artères pulmonaires de petit calibre entraînant une augmentation des résistances artérielles pulmonaires aboutissant à une défaillance cardiaque droite. La vasoconstriction, le remodelage des artères pulmonaires distales, l’inflammation et le stress oxydant sont de facteurs clés de la pathogénèse de l'HTAP. Nous avons testé les potentiels de la formulation EPA:DHA 6:1 à prévenir l’hypertension pulmonaire et les altérations cardiovasculaires et pulmonaires induites par l’injection de monocrotaline chez le rat. Le traitement des rats monocrotaline avec l’EPA:DHA 6:1 (500 mg/kg/j, p.o) prévient significativement l’élévation de la pression artérielle pulmonaire moyenne, la pression systolique du ventricule droit, diminue le débit cardiaque, l’hypertrophie et la dilatation du ventricule droit. L’EPA:DHA 6:1 réduit également les résistances vasculaires pulmonaires, le remodelage des artérioles pulmonaires et les infiltrations lymphocytaires et macrophagiques. De plus, l’EPA:DHA 6:1 inhibe la production des espèces réactives de l’oxygène, diminue la surexpression des sous-unités p22phox et p47phox de la NADPH oxydase, des cyclooxygénases 1 et 2, des récepteurs ETA et ETB de l’endothéline-1, de la eNOS découplée et améliore la dysfonction endothéliale des artères pulmonaires. L’EPA:DHA 6:1 exercent des effets anti-inflammatoires, antioxydants et vasoprotecteurs et prévient le développement de l’HTAP induite par l’injection de monocrotaline chez le rat. / Pulmonary arterial hypertension (PAH) is characterized by remodeling of the small pulmonary arteries leading to a progressive increase in pulmonary vascular resistance and right ventricular failure. Pulmonary endothelial dysfunction, inflammation and oxidative stress promote the development of pulmonary hypertension. Omega-3 polyunsaturated fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acids (DHA) have been shown to protect the cardiovascular system and reduce inflammation and oxidative stress. The present study evaluate the potential of EPA:DHA 6:1 to prevent monocrotaline-induced PAH in rats. EPA:DHA 6:1 treatment (500 mg/kg/d, p.o) prevented the MCT-induced mean pulmonary arterial pressure, right ventricular systolic pressure and decreased cardiac output. EPA:DHA 6:1 also attenuated right ventricular hypertrophy by reducing Fulton’s index and pulmonary arterial remodeling, decreased lymphocytes T and macrophages infiltration. EPA:DHA 6:1 treatment significantly reduced MCT-induced vascular oxidative stress and improved endothelial function in pulmonary arteries. The protective effect of EPA:DHA 6:1 was associated with the prevention of the MCT-induced upregulation of NADPH oxidase subunits (p22phox and p47phox), COX-1 and COX-2, endothelin A and B receptors and uncoupled eNOS in pulmonary arterioles. Our studies show that the EPA:DHA 6:1 formulation exerts anti-inflammatory, anti-oxidant and has a protective vascular effect in the pulmonary arteries, which may contribute to prevent and potentially cure pulmonary hypertension induced by MCT in rat.
2

Régulation de l'expression hépatique de récepteur LSR (lipolys stimulated lipoprotein receptor) : rôles de l'acide docosahexaénoïque et du récepteur PPARa ( peroxisome proliferator-activated receptor alpha) / Regulation of the expression of hepatic lipolysis stimulated lipoprotein receptor : roles of docosahexaenoic acid and peroxisome proliferator-activated receptor alpha

Akbar, Samina 11 December 2013 (has links)
Le récepteur LSR est un acteur important du métabolisme hépatique, puisqu'il joue un rôle dans la clairance des lipoprotéines à ApoB/ApoE riches en triglycérides durant la période postprandiale. Dans cette étude, nous avons montré qu'un traitement in vitro par DHA peut augmenter les niveaux de protéine et d'activité LSR dans les cellules d'hépatome de souris Hepa 1-6. En toute cohérence, un régime supplémenté en DHA a conduit à élever les niveaux de protéine LSR hépatique chez la souris. Mais aucune de ces deux études n'a montré de changement au niveau des ARNm. Ceci suggère que l'enrichissement en DHA influe positivement sur le microenvironnement de LSR et son ancrage à la surface de la cellule. Nous avons ensuite étudié le rôle du récepteur PPAR[alpha] dans la régulation du gène lsr. Une analyse in silico nous a permis d'identifier des éléments PPRE dans la région 5' régulatrice du gène humain et de ses homologues de souris et de rat. Des traitements pharmacologiques par des agoniste et antagoniste spécifiques de PPAR[alpha] ont montré que ce récepteur est impliqué dans la régulation transcriptionnelle de l'expression du LSR dans les cellules Hepa 1 6. Enfin, une analyse transcriptomique a révélé une diminution de l'expression de PPAR[alpha] et d'autres gènes impliqués dans le métabolisme lipidique hépatique chez la souris LSR+/- sous régime standard ou riche en graisses. En conclusion, toutes ces études indiquent que l'activité LSR hépatique est sous le contrôle de facteurs nutritionnels capables d'activer divers mécanismes de régulation, faisant du LSR une cible d'intérêt potentiel pour des stratégies nutritionnelles ou thérapeutiques destinées à prévenir ou traiter les dyslipidémies / Lipolysis stimulated lipoprotein receptor (LSR) plays an important role in the clearance of ApoB/ApoE containing triglyceride-rich lipoproteins during postprandial phase. In this study, we demonstrated that in vitro treatment of mouse hepatoma cells, Hepa 1-6, with docosahexaenoic acid (DHA) led to an increase in LSR protein levels as well as its activity. Furthermore, the mice placed on the diet supplemented with DHA showed an increase in hepatic LSR protein. However, the mRNA levels remained unchanged in both in vitro and in vivo studies, suggesting that DHA enrichment may result in changes in LSR microenvironment that could affect its anchorage at the surface of cell membrane. Specific peroxisome proliferator response elements were identified in the upstream region of human, mouse and rat lsr gene by in silico analysis. We therefore sought to determine the role of the transcription factor, peroxisome proliferator-activated receptor (PPAR[alpha]), in LSR regulation. In vitro pharmacological studies using PPAR[alpha]-selective agonist and antagonist agents demonstrated that PPAR[alpha] is indeed involved in the transcriptional regulation of LSR expression. Furthermore, qPCR array analysis revealed the downregulation of PPAR[alpha] and various genes involved in hepatic lipid metabolism in LSR+/- mice on standard and high-fat diets. In conclusion, these studies show that the hepatic LSR activity is controlled by dietary factors that can activate various pathways involved in regulating lipid homeostasis, therefore representing LSR as a potential target for either nutritional or therapeutic strategies towards the prevention or treatment of dyslipidemia
3

Métabolisme et intérêt nutritionnel de l’acide docosapentaénoïque n-3 : modulation du statut tissulaire en acides gras n-3 par les lipides laitiers alimentaires chez le rat / Metabolism and nutritional interest of n-3 docosapentaenoic acid : modulation of n-3 fatty acid status in tissues by dietary dairy lipids in rats

Drouin, Gaëtan 03 July 2018 (has links)
L’optimisation du statut tissulaire en acides gras polyinsaturés à longues chaines n-3 (AGPILC n-3) fait partie des objectifs actuels en nutrition humaine. En effet, de nombreux effets bénéfiques sur la santé humaine ont été démontrés pour ces différents AGPILC n-3. Néanmoins, la bioconversion de ces dérivés à partir de leur précurseur alimentaire, l’acide α-linolénique, est limitée chez l’Homme et ne permet pas de subvenir aux besoins. Parmi cette famille d’acides, l’acide docosahexaénoïque (DHA) et de l’acide eicosapentaénoïque (EPA) ont été largement étudiés à l’inverse de ceux de l’acide docosapentaénoïque n-3 (DPA). Le premier objectif de ces travaux a été d’étudier l’impact d’une supplémentation nutritionnelle en DPA sur le métabolisme des acides gras et le métabolisme lipidique chez le rat sain. Pour cela, une méthode de purification du DPA à haute pureté et en grande quantité par chromatographie liquide a tout d’abord été mise en place. Ce résultat participe à faciliter la recherche future des effets in vivo du DPA dont la disponibilité commerciale est faible. Après sa supplémentation nutritionnelle, le DPA a été incorporé dans de multiples tissus et a impacté les compositions tissulaires en AGPILC n-3 de certains organes spécifiques comme le foie, le cœur, le poumon, la rate et le rein. Ainsi, la supplémentation en DPA pourrait être une source d’EPA, de DPA, et dans une moindre mesure de DHA. Enfin, comparé à une supplémentation en EPA ou en DHA, le DPA a été l’AGPILC n-3 le plus puissant pour améliorer la triglycéridémie et la cholestérolémie des animaux. Ces informations participeront certainement à une prise en compte plus importante du DPA tant dans les études nutritionnelles ainsi que dans l’installation des futures recommandations nutritionnelles. Le deuxième axe de recherche a porté sur la capacité d’une incorporation partielle de lipides laitiers dans le régime à augmenter le statut tissulaire en AGPI-LC n-3. L’incorporation de lipides laitiers a augmenté le statut en DHA cérébral et rétinien et le statut en DPA dans les autres tissus étudiés. De plus, l’induction de la conversion des AGPILC n-3 à partir de leur précurseur par les lipides laitiers a été complémentaire avec la supplémentation en DPA pour augmenter le statut tissulaire en AGPI-LC n-3. Ces résultats s’insèrent dans un contexte de nutrition infantile, période pendant laquelle l’incorporation des AGPI-LC n-3 est maximale dans les tissus nerveux. Ainsi, ces résultats apportent des données intéressantes tant pour les entreprises que pour les professionnels de santé pour recommander à la consommation des formules infantiles contenant des lipides laitiers. / The optimization of tissue status in n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA) is one of the current goals in human nutrition. Indeed, many beneficial effects on human health have been demonstrated for these different n-3 LCPUFA. However, the bioconversion of these derivatives from their food precursor, α-linolenic acid, is limited in humans and it does not meet the needs of the organism. Among this family of fatty acids, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) have been widely studied in contrast to those of n-3 docosapentaenoic acid (DPA). The first objective of this work was to study the impact of dietary supplementation with DPA on fatty acid metabolism and lipid metabolism in healthy rats. For this, a method for purifying DPA with high purity and in large quantities by liquid chromatography was first established. This result helps future research of the in vivo effects of DPA, poorly commercially available. After its nutritional supplementation, DPA was incorporated into multiple tissues and it has affected the n-3 LCPUFA tissue compositions of specific organs such as the liver, heart, lung, spleen and the kidney. Thus, supplementation with DPA could be a source of EPA, DPA, and to a lesser extent DHA. Finally, compared to supplementation with EPA or DHA, DPA was the most potent n-3 LCPUFA to improve triglyceridemia and cholesterolemia in animals. This information will certainly contribute to a greater consideration of DPA both in nutritional studies and in the direction of future nutritional recommendations. The second area of ​​research focused on the ability of a partial incorporation of dairy lipids in the diet to increase the tissue status in n-3 LCPUFA. Incorporation of dairy lipids in the diet increased DHA status in brain and retina and DPA status in the other studied tissues. In addition, the induction of conversion of n-3 LCPUFA from their precursor by dairy lipid was complementary with the DPA supplementation to increase n-3 LCPUFA status in tissues. These results fit into a context of infant nutrition, during which the incorporation of n-3 LCPUFA is maximal in nervous tissues. Thus, these results provide interesting data for both companies and health professionals to recommend infant formulas containing dairy lipids for consumption.

Page generated in 0.0434 seconds