• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 63
  • 26
  • 14
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 137
  • 33
  • 20
  • 19
  • 14
  • 13
  • 13
  • 13
  • 12
  • 12
  • 11
  • 10
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Investigation into the acidic protein fraction of bovine whey and its effect on bone cells : a thesis presented in partial fulfilment of the requirements for the degree of Masters of Science in Chemistry at Massey University, New Zealand EMBARGOED till 1 December 2015

Mullan, Bernadette Jane January 2010 (has links)
Milk is provided to new borns as their first food source and it contains essential nutrients, vitamins and other beneficial components, such as enzymes and antibodies that are required for rapid growth and development of the new born and for sustained growth over time. Milk contains two main types of proteins; casein proteins and whey proteins. Although casein proteins account for up to 80% of the proteins found in bovine milk, it is the whey protein that has become of high interest because of its bioactive content. Whey, a very watery mixture of lactose, proteins, minerals and trace amounts of fat, is formed from milk when the milk is coagulated and/or the casein proteins are removed from the milk. Bovine whey protein, including both the acidic and basic fractions (low and high isoelectric point, respectively), has previously been studied in vitro (cell based) and in vivo (using rats) for its impact on bone to determine if it can help improve bone mineral density and help reduce the risk of developing bone diseases, such as osteoporosis. Bone is constantly undergoing a remodelling process of being dissolved and reformed and the two main cell types responsible for this bone remodelling process are mature osteoclasts, which dissolve (resorb) bone, and osteoblasts, which reform the bone. Prior work has shown that acidic protein fractions derived from different sources of whey protein concentrate (WPC) have both in vivo and in vitro activity on bone, particularly anti-resorptive properties. However, the component(s) which confer activity have not yet been identified. In this thesis, work was undertaken to better understand the analytical composition of three types of WPC (cheese, mineral acid and lactic acid) and their associated acidic protein fractions and relate this to bone activity in the hope of identifying where the activity lies. Bone activity was assessed using in vitro screening with osteoblast cells (MC3T3-E1) and osteoclast cells (RAW 264.7). Comparison of the cell-based bone activity of the parent WPCs and corresponding acidic fractions indicated that the acidic fractions derived from both mineral acid and lactic WPC were superior in their ability to inhibit osteoclast development. Although compositional data was complex and definitive correlations with both bone bioactivities could not be made, it appeared that elements common to both the acidic fractions were a higher proportion of GLYCAM-1 and bone sialoprotein-1 (osteopontin). Further studies to more closely investigate the bone bioactivity of the acidic fractions are warranted.
82

Investigation into the acidic protein fraction of bovine whey and its effect on bone cells : a thesis presented in partial fulfilment of the requirements for the degree of Masters of Science in Chemistry at Massey University, New Zealand EMBARGOED till 1 December 2015

Mullan, Bernadette Jane January 2010 (has links)
Milk is provided to new borns as their first food source and it contains essential nutrients, vitamins and other beneficial components, such as enzymes and antibodies that are required for rapid growth and development of the new born and for sustained growth over time. Milk contains two main types of proteins; casein proteins and whey proteins. Although casein proteins account for up to 80% of the proteins found in bovine milk, it is the whey protein that has become of high interest because of its bioactive content. Whey, a very watery mixture of lactose, proteins, minerals and trace amounts of fat, is formed from milk when the milk is coagulated and/or the casein proteins are removed from the milk. Bovine whey protein, including both the acidic and basic fractions (low and high isoelectric point, respectively), has previously been studied in vitro (cell based) and in vivo (using rats) for its impact on bone to determine if it can help improve bone mineral density and help reduce the risk of developing bone diseases, such as osteoporosis. Bone is constantly undergoing a remodelling process of being dissolved and reformed and the two main cell types responsible for this bone remodelling process are mature osteoclasts, which dissolve (resorb) bone, and osteoblasts, which reform the bone. Prior work has shown that acidic protein fractions derived from different sources of whey protein concentrate (WPC) have both in vivo and in vitro activity on bone, particularly anti-resorptive properties. However, the component(s) which confer activity have not yet been identified. In this thesis, work was undertaken to better understand the analytical composition of three types of WPC (cheese, mineral acid and lactic acid) and their associated acidic protein fractions and relate this to bone activity in the hope of identifying where the activity lies. Bone activity was assessed using in vitro screening with osteoblast cells (MC3T3-E1) and osteoclast cells (RAW 264.7). Comparison of the cell-based bone activity of the parent WPCs and corresponding acidic fractions indicated that the acidic fractions derived from both mineral acid and lactic WPC were superior in their ability to inhibit osteoclast development. Although compositional data was complex and definitive correlations with both bone bioactivities could not be made, it appeared that elements common to both the acidic fractions were a higher proportion of GLYCAM-1 and bone sialoprotein-1 (osteopontin). Further studies to more closely investigate the bone bioactivity of the acidic fractions are warranted.
83

Investigation into the acidic protein fraction of bovine whey and its effect on bone cells : a thesis presented in partial fulfilment of the requirements for the degree of Masters of Science in Chemistry at Massey University, New Zealand EMBARGOED till 1 December 2015

Mullan, Bernadette Jane January 2010 (has links)
Milk is provided to new borns as their first food source and it contains essential nutrients, vitamins and other beneficial components, such as enzymes and antibodies that are required for rapid growth and development of the new born and for sustained growth over time. Milk contains two main types of proteins; casein proteins and whey proteins. Although casein proteins account for up to 80% of the proteins found in bovine milk, it is the whey protein that has become of high interest because of its bioactive content. Whey, a very watery mixture of lactose, proteins, minerals and trace amounts of fat, is formed from milk when the milk is coagulated and/or the casein proteins are removed from the milk. Bovine whey protein, including both the acidic and basic fractions (low and high isoelectric point, respectively), has previously been studied in vitro (cell based) and in vivo (using rats) for its impact on bone to determine if it can help improve bone mineral density and help reduce the risk of developing bone diseases, such as osteoporosis. Bone is constantly undergoing a remodelling process of being dissolved and reformed and the two main cell types responsible for this bone remodelling process are mature osteoclasts, which dissolve (resorb) bone, and osteoblasts, which reform the bone. Prior work has shown that acidic protein fractions derived from different sources of whey protein concentrate (WPC) have both in vivo and in vitro activity on bone, particularly anti-resorptive properties. However, the component(s) which confer activity have not yet been identified. In this thesis, work was undertaken to better understand the analytical composition of three types of WPC (cheese, mineral acid and lactic acid) and their associated acidic protein fractions and relate this to bone activity in the hope of identifying where the activity lies. Bone activity was assessed using in vitro screening with osteoblast cells (MC3T3-E1) and osteoclast cells (RAW 264.7). Comparison of the cell-based bone activity of the parent WPCs and corresponding acidic fractions indicated that the acidic fractions derived from both mineral acid and lactic WPC were superior in their ability to inhibit osteoclast development. Although compositional data was complex and definitive correlations with both bone bioactivities could not be made, it appeared that elements common to both the acidic fractions were a higher proportion of GLYCAM-1 and bone sialoprotein-1 (osteopontin). Further studies to more closely investigate the bone bioactivity of the acidic fractions are warranted.
84

Investigation into the acidic protein fraction of bovine whey and its effect on bone cells : a thesis presented in partial fulfilment of the requirements for the degree of Masters of Science in Chemistry at Massey University, New Zealand EMBARGOED till 1 December 2015

Mullan, Bernadette Jane January 2010 (has links)
Milk is provided to new borns as their first food source and it contains essential nutrients, vitamins and other beneficial components, such as enzymes and antibodies that are required for rapid growth and development of the new born and for sustained growth over time. Milk contains two main types of proteins; casein proteins and whey proteins. Although casein proteins account for up to 80% of the proteins found in bovine milk, it is the whey protein that has become of high interest because of its bioactive content. Whey, a very watery mixture of lactose, proteins, minerals and trace amounts of fat, is formed from milk when the milk is coagulated and/or the casein proteins are removed from the milk. Bovine whey protein, including both the acidic and basic fractions (low and high isoelectric point, respectively), has previously been studied in vitro (cell based) and in vivo (using rats) for its impact on bone to determine if it can help improve bone mineral density and help reduce the risk of developing bone diseases, such as osteoporosis. Bone is constantly undergoing a remodelling process of being dissolved and reformed and the two main cell types responsible for this bone remodelling process are mature osteoclasts, which dissolve (resorb) bone, and osteoblasts, which reform the bone. Prior work has shown that acidic protein fractions derived from different sources of whey protein concentrate (WPC) have both in vivo and in vitro activity on bone, particularly anti-resorptive properties. However, the component(s) which confer activity have not yet been identified. In this thesis, work was undertaken to better understand the analytical composition of three types of WPC (cheese, mineral acid and lactic acid) and their associated acidic protein fractions and relate this to bone activity in the hope of identifying where the activity lies. Bone activity was assessed using in vitro screening with osteoblast cells (MC3T3-E1) and osteoclast cells (RAW 264.7). Comparison of the cell-based bone activity of the parent WPCs and corresponding acidic fractions indicated that the acidic fractions derived from both mineral acid and lactic WPC were superior in their ability to inhibit osteoclast development. Although compositional data was complex and definitive correlations with both bone bioactivities could not be made, it appeared that elements common to both the acidic fractions were a higher proportion of GLYCAM-1 and bone sialoprotein-1 (osteopontin). Further studies to more closely investigate the bone bioactivity of the acidic fractions are warranted.
85

Investigation into the acidic protein fraction of bovine whey and its effect on bone cells : a thesis presented in partial fulfilment of the requirements for the degree of Masters of Science in Chemistry at Massey University, New Zealand EMBARGOED till 1 December 2015

Mullan, Bernadette Jane January 2010 (has links)
Milk is provided to new borns as their first food source and it contains essential nutrients, vitamins and other beneficial components, such as enzymes and antibodies that are required for rapid growth and development of the new born and for sustained growth over time. Milk contains two main types of proteins; casein proteins and whey proteins. Although casein proteins account for up to 80% of the proteins found in bovine milk, it is the whey protein that has become of high interest because of its bioactive content. Whey, a very watery mixture of lactose, proteins, minerals and trace amounts of fat, is formed from milk when the milk is coagulated and/or the casein proteins are removed from the milk. Bovine whey protein, including both the acidic and basic fractions (low and high isoelectric point, respectively), has previously been studied in vitro (cell based) and in vivo (using rats) for its impact on bone to determine if it can help improve bone mineral density and help reduce the risk of developing bone diseases, such as osteoporosis. Bone is constantly undergoing a remodelling process of being dissolved and reformed and the two main cell types responsible for this bone remodelling process are mature osteoclasts, which dissolve (resorb) bone, and osteoblasts, which reform the bone. Prior work has shown that acidic protein fractions derived from different sources of whey protein concentrate (WPC) have both in vivo and in vitro activity on bone, particularly anti-resorptive properties. However, the component(s) which confer activity have not yet been identified. In this thesis, work was undertaken to better understand the analytical composition of three types of WPC (cheese, mineral acid and lactic acid) and their associated acidic protein fractions and relate this to bone activity in the hope of identifying where the activity lies. Bone activity was assessed using in vitro screening with osteoblast cells (MC3T3-E1) and osteoclast cells (RAW 264.7). Comparison of the cell-based bone activity of the parent WPCs and corresponding acidic fractions indicated that the acidic fractions derived from both mineral acid and lactic WPC were superior in their ability to inhibit osteoclast development. Although compositional data was complex and definitive correlations with both bone bioactivities could not be made, it appeared that elements common to both the acidic fractions were a higher proportion of GLYCAM-1 and bone sialoprotein-1 (osteopontin). Further studies to more closely investigate the bone bioactivity of the acidic fractions are warranted.
86

Investigation into the acidic protein fraction of bovine whey and its effect on bone cells : a thesis presented in partial fulfilment of the requirements for the degree of Masters of Science in Chemistry at Massey University, New Zealand EMBARGOED till 1 December 2015

Mullan, Bernadette Jane January 2010 (has links)
Milk is provided to new borns as their first food source and it contains essential nutrients, vitamins and other beneficial components, such as enzymes and antibodies that are required for rapid growth and development of the new born and for sustained growth over time. Milk contains two main types of proteins; casein proteins and whey proteins. Although casein proteins account for up to 80% of the proteins found in bovine milk, it is the whey protein that has become of high interest because of its bioactive content. Whey, a very watery mixture of lactose, proteins, minerals and trace amounts of fat, is formed from milk when the milk is coagulated and/or the casein proteins are removed from the milk. Bovine whey protein, including both the acidic and basic fractions (low and high isoelectric point, respectively), has previously been studied in vitro (cell based) and in vivo (using rats) for its impact on bone to determine if it can help improve bone mineral density and help reduce the risk of developing bone diseases, such as osteoporosis. Bone is constantly undergoing a remodelling process of being dissolved and reformed and the two main cell types responsible for this bone remodelling process are mature osteoclasts, which dissolve (resorb) bone, and osteoblasts, which reform the bone. Prior work has shown that acidic protein fractions derived from different sources of whey protein concentrate (WPC) have both in vivo and in vitro activity on bone, particularly anti-resorptive properties. However, the component(s) which confer activity have not yet been identified. In this thesis, work was undertaken to better understand the analytical composition of three types of WPC (cheese, mineral acid and lactic acid) and their associated acidic protein fractions and relate this to bone activity in the hope of identifying where the activity lies. Bone activity was assessed using in vitro screening with osteoblast cells (MC3T3-E1) and osteoclast cells (RAW 264.7). Comparison of the cell-based bone activity of the parent WPCs and corresponding acidic fractions indicated that the acidic fractions derived from both mineral acid and lactic WPC were superior in their ability to inhibit osteoclast development. Although compositional data was complex and definitive correlations with both bone bioactivities could not be made, it appeared that elements common to both the acidic fractions were a higher proportion of GLYCAM-1 and bone sialoprotein-1 (osteopontin). Further studies to more closely investigate the bone bioactivity of the acidic fractions are warranted.
87

Survivin expression after traumatic brain injury potential roles in neuroprotection /

Johnson, Erik Andrew. January 2004 (has links)
Thesis (Ph.D.)--University of Florida, 2004. / Typescript. Title from title page of source document. Document formatted into pages; contains 87 pages. Includes Vita. Includes bibliographical references.
88

Étude de catalyseurs à base d’oxyde de titane et d’oxyde de vanadium sulfatés pour l’oxydation sélective du méthanol en diméthoxyméthane (DMM) / Sulfated vanadia-based and titania-based catalysts for selective oxidation of methanol to dimethoxymethane (DMM)

Zhao, Hongying 28 June 2010 (has links)
Ce travail est en relation avec la thématique "Energies Propres". Le diméthoxyméthane estun composé adapté au stockage de l’hydrogène pour des applications mobiles, de par saforte teneur en hydrogène, sa très faible toxicité et son faible impact sur l'environnement.De ce fait, des catalyseurs mixtes, à base d’oxyde de vanadium et d’oxyde de titanesulfatés ont été préparés et testés dans la réaction d'oxydation sélective du méthanol enDMM, en vue de la production d'hydrogène. Les propriétés acides et redox de surface ontété corrélées aux performances catalytiques. Les mécanismes de réaction et l'identificationdes facteurs limitant l'activité et la sélectivité des catalyseurs ont été aussi étudiés. / This work is related to the subject “Clean Energy”. Dimethoxymethane (DMM) is asuitable H2 storage material for mobile application because of its high content of hydrogen,extremely low toxicity and environmentally benign. Therefore, sulfated vanadia-titania,sulfated binary vanadia-based and titania-based catalysts were prepared and evaluated inthe reaction of selective oxidation of methanol to DMM and further production ofhydrogen. The surface acidic and redox properties of the studied catalysts were correlatedto their catalytic performance. In addition, the reaction mechanisms and the identificationof factors limiting the activity and selectivity of catalysts were also studied.
89

Étude théorique et expérimentale de la structure et de la réactivité de quelques complexes de coordination de zinc contenant des ligands base de Schiff / A combined experimental and theoretical study of the structure and reactivity of some Zn-Schiff base complexes

Lamine, Walid 14 September 2018 (has links)
Ce travail a essentiellement porté sur la description et la rationalisation de certaines propriétés des complexes du Zinc contenant des ligands de base de Schiff par le biais d’approches mixtes théorique et expérimentale. La première partie de ce travail concerne la synthèse et la caractérisation d’un nouveau complexe dinucléaire de Zn(II) à ligand base de Schiff tétra-azoté N4. Ce complexe s’auto-assemble en hélice à double brin avec un environnement tétraédrique rarement observé pour l’ion Zn2+ avec ce type de ligand. Ce complexe s’est avéré être thermodynamiquement instable en présence de traces d’eau, subissant ainsi une démétallation rapide. De ce fait, sa réactivité vis-à-vis de l’eau a été étudiée par des mesures spectroscopiques et des calculs DFT. Puis, le mécanisme réactionnel de démétallation a été élucidé pour la première fois et pourrait facilement être généralisé à l’hydrolyse des complexes Zn-sal(ph)en apparentés. Dans la seconde partie, le caractère acide de Lewis, principal facteur de la réactivité/coordination des complexes Zn-sal(ph)en a été étudié au moyen des descripteurs de la DFT-conceptuelle. Une analyse préliminaire a été réalisée sur un prototype modèle à savoir [ZnCl4]2-, et les résultats ont été généralisés aux complexes de Zn-sal(ph)en comportant différents types d’espaceurs diamine (flexible, semi-rigide, et rigide) afin de rationaliser l’acidité de Lewis de ces complexes avec la nature du pont diamine. L’inclusion des densités des états excités par le biais du descripteur dual dit « state specific dual descriptor» a permis de décrire avec succès la réactivité appropriée du complexe choisi. Enfin, la troisième partie de ce travail, est consacré à l’effet dit de « self-interaction » survenue dans la modélisation de la réaction de cyclo-addition du CO2 sur les époxydes catalysée par un complexe Zn-N4 base de Schiff en présence de NBu4X (X=I). Cette erreur menant à des profils énergétiques irréalistes au niveau DFT, a été identifiée et une nouvelle approche théorique a été proposée et développée afin de contourner cette erreur / In this work, we focus our interest on the description and rationalization of some properties of Zinc complexes of Schiff bases schemes through theoretical and experimental approaches. The first study deals with the syntheses and characterization of a novel Zn-N4-Schiff base L= ((±) -trans-N, N’-Bis(2-aminobenzylidene)-1,2-diaminocyclohexane) showing an unexpected self-assembled double-stranded helicate structure , in which zinc atoms are in distorted tetrahedral environments, revealing an M- (R, R) left-handed helicity in its asymmetric unit. This dimer is thermodynamically unstable in presence of water traces and undergoes a rapid demetallation process that is studied by both experimental and theoretical approaches. The reaction is monitored through DOSY NMR analysis, and the theoretical mechanism of the demetallation process is elucidated for the first time using DFT method and which should be easily generalized to the demetallation of N2O2 sal(ph)en Zn complexes. In the second part of this study, the Lewis acidic behavior, the main factor of the reactivity/coordination of Zn-sal(ph)en complexes, is studied using conceptual density functional theory descriptors. This Lewis acidic character is addressed in a first stage to a prototype complex, namely [ZnCl4]2- and the results have been generalized to Zn-sal(ph)en complexes with different diamine bridges through flexible to semi-rigid then to rigid ranges, in order to characterize and rationalize this Lewis acid effect in relation with the nature of the diamine bridge. The inclusion of the electronic excited state densities by the so-called state specific dual descriptor allows us to recover successfully the appropriate reactivity of these chosen complexes. Finally, in the third part, we consider the effect of the « self-interaction » occurring when modeling the cycloaddition of CO2 to epoxide reactions catalyzed via the binary system Zn-N4 Schiff base /NBu4X (X=I). This error leading to unrealistic energy profiles at the DFT level has been identified and a new theoretical approach is proposed and developed to correct this error
90

Aderência, invasão e indução de apoptose por estreptococos do grupo B em células epiteliais respiratórias A549 / Adhesion, invasion and apoptosis inducing for group B streptococci in respiratory epithelial cells A549

Andréia Ferreira Eduardo da Costa 12 March 2009 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Estreptococos do grupo B (EGB), principalmente sorotipo III são a principal causa de pneumonia neonatal, sepse e meningite. O potencial de virulência das amostras de EGB pode determinar a colonização ou a infecção do hospedeiro. Como o pulmão constitui uns dos primeiros órgãos durante o processo de invasão sistêmica por EGB, nós decidimos investigar os mecanismos de adesão e invasão de amostras do sorotipo III (90356-líquor e 80340-vagina) com linhagem de células epiteliais do pulmão humano (A549). Desta forma, o principal objetivo deste estudo foi avaliar a capacidade de aderência e invasão de duas amostras de EGB sorotipo III com células de epiteliais pulmonares A549, a persistência bacteriana intracelular, a fusão com compartimentos acídicos, potencial citotóxico e indução de apoptose. As amostras mostraram capacidade de aderir e invadir o epitélio pulmonar A549, onde a amostra 90356-líquor isolada de paciente a que apresentou maior propriedade adesiva e invasiva que a amostra 80340-vagina (p<0,05). Ambas as cepas mostraram persistência intracelular sem replicação no interior do epitélio respiratório até 24h de incubação. Além disso, verificamos que os EGB são capazes de promover vacuolização celular permanecendo viáveis dentro de vacúolos acídicos, sugerindo a ocorrência de fusão lisossomo-fagossomo. A amostra 90356-líquor também mostrou maior citotoxidade quando comparada com a amostra 80340-vagina. A análise por citometria de fluxo demonstrou, pela primeira vez, que o EGB induz apoptose em epitélio respiratório, podendo representar um mecanismo importante para o desenvolvimento da lesão celular aguda e a patogênese bacteriana. / Group B streptococci (GBS), mainly serotype III, is a major cause of neonatal pneumonia, sepsis and meningitis. Virulence potential of GBS strains may determine the outcome of host colonization or infection. Because the lung constitutes a first step in GBS systemic invasion processes, we have investigates the adherence and invasion mechanisms of GBS-III isolates to human lung epithelial cell line (A549). Thus, the main objective of this study was to evaluate the ability of adhesion and invasion of GBS strains serotype III (90356-liquor and 80340-vagina) with A549 lung epithelial cells, intracellular bacterial persistence, fusion with acidic compartments, cytotoxic potential, and induction of apoptosis. The strains showed ability to adhere and invade the epithelial A549 cells; GBS 90356-liquor isolated from a patient showed a more efficient adherence and invasion properties than GBS-III 80340 isolated from vagina (P<0,05). Both strains showed persistent intracellular viability without replication into A549 cells up to 24h incubation. In addition, we found that GBS are able to promote cellular vacuolization and persisted viable inside acidic vacuoles, suggesting lysosome-phagosome fusion. The GBS 90356-líquor also showed higher cytotoxicity when compared with 80340-vagina strain. The present work describe for first time by flow cytometry that GBS induces apoptosis in respiratory epithelium and be an important mechanism for the development of acute cellular injury and bacterial pathogenesis.

Page generated in 0.0236 seconds