• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 123
  • 53
  • 40
  • 16
  • 8
  • 8
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 343
  • 95
  • 44
  • 40
  • 36
  • 33
  • 31
  • 31
  • 30
  • 28
  • 26
  • 24
  • 21
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

The assessment of topsoil degradation on rehabilitated coal discard dumps / Theunis Louis Morgenthal

Morgenthal, Theunis Louis January 2003 (has links)
This study investigates coal discard cover soil fertility and its potential for degradation, particularly in terms of its salinisation and acidification potential. Seven rehabilitated coal discard dumps in the Witbank, Ermelo and Newcastle regions were used as study areas. All areas were rehabilitated with a cover soil layer, revegetated and annually fertilised with nitrate fertilisers, super phosphate, kraal manure and lime. Performance guideline for pH of 5.5-(6.5 i0.5)-7.5 and electrical conductivity guideline of preferably less than 200 mS.rn-' but not higher than 400 mS.m-' were set based on literature information. Soil chemical data from a three-year fertilisation programme were used to assess the fertility of the cover soil surface (0-150mm). Data collected over a three year period as well as additional electrical conductivity and pH measurements from the cover soil surface, subsoil, cover soil/coal contact zone and underlying coal itself were used to assess the occurrence of salinisation and acidification of the cover soil. The soil fertility varied significantly among dumps as well as over the three years. Results indicated an increase in ammonium acetate extractable macro elements (calcium, magnesium and potassium). With the exception of manganese, no micro-element toxicities were recorded. Iron concentrations were slightly elevated in some of the sandy cover soil layers. No increase in soluble nitrogen (nitrate and ammonium) was found and most soluble nitrogen was in the form of nitrates. In general the Bray extractable phosphate increased during the study period. It can be predicted that with the following fertiliser programme increases of exchangeable macro-elements as well as available phosphorus can be expected. The study could not indicate an increase in adsorbed or available nitrogen. Organic carbon was initially not analysed therefore no comments can be made whether organic matter increased. Four of the seven dumps surveyed had comparably similar organic carbon levels to the background samples. Overall the fertiliser programme increased the electrical conductivity and decreased the acidity of the cover soil surface. Acidity and salinity was in general not a problem at the surface of the cover soil and pH was even slightly higher in cover soil samples. The acidity and especially salinity increased at the subsoil and so did the sulphate concentrations. Calcium and magnesium sulphate were predominantly responsible for higher electrical conductivity measurements. The percentage exchangeable sodium was also predominantly less than 2% indicating that sodicity is not currently a problem in cover soil. Soil fertility was satisfactory for vegetation growth and macroelement concentrations were in the correct ratio although calcium was slightly high. An elevated sulphate concentration, in comparison to the natural grassland soils, as well as a high salinity and high acidity in the subsoil layers indicate that salinisation and acidification could deteriorate without proper management. A slightly acidic cover soil can also be attributed partially to its natural acidic pH due to the wellweathered and leach property of burrow pit. Higher than recommended salinity levels were found in subsoil samples but the occurrence of acidification of the subsoil was more dump specific. In relation to acidity and salinity guidelines only the cover soil of one dump was concerning and the larger dumps subsoil acidity and salinity were elevated. The following management strategies are proposed: a) The acidification potential, and therefore the pyrite content of the coal discard must be considered during decisions making on the rehabilitation method (clay barriers), topsoil depth, maintenance and mine closure potential. b) The occasional monitoring of the subsoil's and coal contact acidity is recommended, although not much can be done to stop acidification after cover-soil placement. c) To ensure a more sustained from of nitrogen supplementation over the long term the use of selected legumes should be investigated. Research in Europe and Australia suggested that nitrogen fixation could contribute substantially to the nitrogen for plant uptake. d) The physical properties of the topsoil (bulk density 8 soil compaction) are also being neglected and needs to be assessed occasionally and interpreted together with chemical analyses. Observations in other studies indicate that this could be the most fundamental problem for vegetation growth and not necessarily soil fertility, since soil physical properties could have a major impact on root development. Key words: Coal discard, mine rehabilitation, soil fertility, topsoil degradation, salinisation, and acidification / Thesis (M. Environmental Management)--North-West University, Potchefstroom Campus, 2004.
82

Assesing biological recovery from acidification and metal contamination in urban lakes from Sudbury, Canada : a paleolimological approach

Tropea, Amy Elizabeth 11 July 2008 (has links)
The acidification and metal contamination of freshwater resources are major environmental concerns in many areas, with Sudbury (Ontario, Canada) having been amongst the most severely impacted. Many scientific investigations have examined the effects of these environmental stressors on aquatic systems, but relatively little is known about the biological recovery process following smelter emission reductions. Therefore, paleolimnological techniques were utilized to determine if diatom and scaled chrysophyte assemblages have recovered toward their pre-disturbance conditions as a result of reduced anthropogenic inputs. Pre-industrial algal assemblages were primarily dominated by circumneutral to alkaline and pH-indifferent taxa. However, there was a shift toward acid-tolerant species in all study lakes with the onset of open pit roasting and smelting operations. Coinciding with emission reductions, scaled chrysophyte assemblages in two of the three study sites have shown evidence of biological recovery. Given the population growth of the city of Sudbury over the last century, and the lack of scientific information regarding cultural eutrophication trends in the region, paleolimnological techniques were also used to track long-term biological changes within diatom assemblages related to cultural disturbances. Historically, oligotrophic diatom taxa primarily dominated the algal assemblages in each of the four study lakes. With the onset of urban environmental stressors there was a shift toward taxa which thrive in more productive systems. In addition, diatom assemblages appear to track increased lakewater pH through time. Finally, geochemical analysis tracked the increase in copper and nickel concentrations in lake sediment with the onset of open pit roasting and smelting activities and the subsequent decline in concentration with emission controls. Metal concentrations in recently deposited lake sediments remain elevated compared to pre-industrial concentrations. Paleolimnological studies comparing pre- and post-disturbance algal assemblages are of interest to lake managers as these data will aid in setting realistic mitigation targets for freshwater systems impacted by acidification, cultural eutrophication, and metal contamination, and will help gauge biological recovery mechanisms. Furthermore, this study provides insight in to the role other environmental stressors (e.g., climate change) may play in the biological recovery process. / Thesis (Master, Biology) -- Queen's University, 2008-07-10 12:04:59.828
83

DIATOM COMMUNITY RESPONSES TO WATER QUALITY IMPROVEMENTS IN LAKES RECOVERING FROM ACIDIFICATION AND METAL-CONTAMINATION NEAR WAWA, ONTARIO, CANADA: A PALEOLIMNOLOGICAL PERSPECTIVE

GREENAWAY, CHRISTINE 30 April 2009 (has links)
In response to sulphur dioxide emission reductions in North America and Europe, there has been a recent shift in research focus towards understanding ecosystem recovery. Evidence for reversibility in the effects of acidification on lake ecosystems within North America has been, for the most part, constrained to a single locality (Sudbury, Ontario). Lakes in a fume-kill area near Wawa, Ontario, present a new and rare opportunity for studying potentially rapid chemical and biological recovery patterns from extreme acidification. Several lakes acidified (pH ~3) during a period of local iron sintering from 1939 to 1998, and although minimal historical data are available, striking biological recovery has recently been observed. This study used paleolimnological techniques to track diatom (class Bacillariophyceae) responses to historical water quality changes in five fume-kill lakes near Wawa. Prior to the onset of iron sintering, the sediment-recorded diatom assemblages were dominated by species that are typically found in circumneutral or slightly alkaline lakes. Following the known occurrence of lake acidification, there was a striking shift in the sediment record towards dominance by acid- and metal-tolerant species. Water quality of the fume-kill lakes has since improved (i.e. pH has increased from ~3 to ~7 and metal concentrations have decreased). In four of the five lake cores, this was reflected by a decrease in the relative abundance of acid-tolerant species. Surprisingly, diatom communities were not progressing towards pre-disturbance species assemblages. Factors impeding the return of native species might include metal enrichment in surface sediment and potentially altered lake thermal regimes. Documenting and understanding recovery trajectories is necessary to help lake managers evaluate policy decisions regarding the efficacy of emission reduction programs and mitigation measures. This thesis provides evidence from one location in addition to Sudbury that the ecological effects of severe lake acidification can be reversed if SO2 emissions are sufficiently reduced. It also further demonstrates the complexity of recovery patterns in acidified and metal-contaminated lakes. / Thesis (Master, Biology) -- Queen's University, 2009-04-26 18:38:20.58
84

Acidification and Climate Warming: Understanding the Impact of Multiple Anthropogenic Stressors on Adirondack (NY, USA) Lakes

Arseneau, Kristina 05 May 2014 (has links)
Lakes in the Adirondack Park (NY, USA) are undergoing chemical recovery from acidification. There is now a pressing research need to define recovery targets for acid-impacted sites. Researchers attempting to designate such targets are hampered by two issues: 1) a lack of long-term monitoring data, and 2) the influence of multiple stressors on recovering lakes. This thesis addresses both difficulties by applying paleolimnological techniques within a regional reference lake framework. Using a set of stringent selection criteria, 31 lakes protected from acidification, eutrophication, road salt seepage, and piscivore introductions were identified from 1,469 Adirondack lakes. Ordination techniques showed that the lakes are representative of 24-36% of the chemical/morphological variation of Adirondack lakes. Qualitative and quantitative historic analyses found that many of the lakes experienced early watershed and/or fisheries disturbance, highlighting the danger of assuming that a lake’s condition remains static over time. A top-bottom paleolimnological study revealed that the reference lakes have undergone a ‘shifting baseline’ in species assemblages, with increases in colonial and/or warm-water chrysophyte taxa from pre-1900 to present, changes most likely due to regional warming and/or oligotrophication. A subset of three reference lakes were then paired with two Adirondack lakes that acidified and are undergoing chemical recovery from acidification. The acidified lakes underwent a significant shift in species composition since the 1995 implementation of the US Acid Rain Program, indicating biological recovery from acidification. However, both reference and acidified lakes showed increases in colonial chrysophytes since ca. 1970-1980, a trend correlated with mean annual air temperature and ice-cover measures in the two reference lakes. Long-term species changes in acidified/reference lakes suggest that the recovering lakes will not return to their pre-disturbance state but will instead move to a state characterized by an increased abundance of colonial taxa/warm-water species. Overall, this thesis demonstrates the utility of pairing paleolimnological techniques with a regional reference site dataset for tracking shifting baselines and defining recovery targets, a method that could be applied to examine other stressors in other regions, thereby addressing a critical management need. / Thesis (Ph.D, Biology) -- Queen's University, 2014-05-03 13:17:09.613
85

Effects of ocean acidification combined with multiple stressors on early life stages of the pacific purple sea urchin

Stavroff, Leslie-Anne 07 May 2014 (has links)
Decreases in ocean pH through ocean acidification has shown to have direct negative impacts on the early life stages of the Pacific purple sea urchin, Strongylocentrotus purpuratus. Research has suggested that multiple stressors could exacerbate, cancel, or even alleviate the impacts of ocean acidification on echinoderms. This study assessed the combined effects of changes in pCO2 concentrations (390, 800, 1500 ppm), salinities (28, 31, 34 ppt) and temperatures (12, 15, 18°C) on fertilization and larval development in S. purpuratus. Increased pCO2 was the predominant stressor, with additive and antagonistic effects from temperature changes, and no effect from salinity changes. Stressor combinations significantly decreased the rate of normal larval development by 28 – 68%, whereas fertilization and larval survival were unaffected. The strong impact on normal larval development likely indicates that later development stages could be detrimentally affected and could influence the population dynamics of S. purpuratus.
86

The assessment of topsoil degradation on rehabilitated coal discard dumps / Theunis Louis Morgenthal

Morgenthal, Theunis Louis January 2003 (has links)
This study investigates coal discard cover soil fertility and its potential for degradation, particularly in terms of its salinisation and acidification potential. Seven rehabilitated coal discard dumps in the Witbank, Ermelo and Newcastle regions were used as study areas. All areas were rehabilitated with a cover soil layer, revegetated and annually fertilised with nitrate fertilisers, super phosphate, kraal manure and lime. Performance guideline for pH of 5.5-(6.5 i0.5)-7.5 and electrical conductivity guideline of preferably less than 200 mS.rn-' but not higher than 400 mS.m-' were set based on literature information. Soil chemical data from a three-year fertilisation programme were used to assess the fertility of the cover soil surface (0-150mm). Data collected over a three year period as well as additional electrical conductivity and pH measurements from the cover soil surface, subsoil, cover soil/coal contact zone and underlying coal itself were used to assess the occurrence of salinisation and acidification of the cover soil. The soil fertility varied significantly among dumps as well as over the three years. Results indicated an increase in ammonium acetate extractable macro elements (calcium, magnesium and potassium). With the exception of manganese, no micro-element toxicities were recorded. Iron concentrations were slightly elevated in some of the sandy cover soil layers. No increase in soluble nitrogen (nitrate and ammonium) was found and most soluble nitrogen was in the form of nitrates. In general the Bray extractable phosphate increased during the study period. It can be predicted that with the following fertiliser programme increases of exchangeable macro-elements as well as available phosphorus can be expected. The study could not indicate an increase in adsorbed or available nitrogen. Organic carbon was initially not analysed therefore no comments can be made whether organic matter increased. Four of the seven dumps surveyed had comparably similar organic carbon levels to the background samples. Overall the fertiliser programme increased the electrical conductivity and decreased the acidity of the cover soil surface. Acidity and salinity was in general not a problem at the surface of the cover soil and pH was even slightly higher in cover soil samples. The acidity and especially salinity increased at the subsoil and so did the sulphate concentrations. Calcium and magnesium sulphate were predominantly responsible for higher electrical conductivity measurements. The percentage exchangeable sodium was also predominantly less than 2% indicating that sodicity is not currently a problem in cover soil. Soil fertility was satisfactory for vegetation growth and macroelement concentrations were in the correct ratio although calcium was slightly high. An elevated sulphate concentration, in comparison to the natural grassland soils, as well as a high salinity and high acidity in the subsoil layers indicate that salinisation and acidification could deteriorate without proper management. A slightly acidic cover soil can also be attributed partially to its natural acidic pH due to the wellweathered and leach property of burrow pit. Higher than recommended salinity levels were found in subsoil samples but the occurrence of acidification of the subsoil was more dump specific. In relation to acidity and salinity guidelines only the cover soil of one dump was concerning and the larger dumps subsoil acidity and salinity were elevated. The following management strategies are proposed: a) The acidification potential, and therefore the pyrite content of the coal discard must be considered during decisions making on the rehabilitation method (clay barriers), topsoil depth, maintenance and mine closure potential. b) The occasional monitoring of the subsoil's and coal contact acidity is recommended, although not much can be done to stop acidification after cover-soil placement. c) To ensure a more sustained from of nitrogen supplementation over the long term the use of selected legumes should be investigated. Research in Europe and Australia suggested that nitrogen fixation could contribute substantially to the nitrogen for plant uptake. d) The physical properties of the topsoil (bulk density 8 soil compaction) are also being neglected and needs to be assessed occasionally and interpreted together with chemical analyses. Observations in other studies indicate that this could be the most fundamental problem for vegetation growth and not necessarily soil fertility, since soil physical properties could have a major impact on root development. Key words: Coal discard, mine rehabilitation, soil fertility, topsoil degradation, salinisation, and acidification / Thesis (M. Environmental Management)--North-West University, Potchefstroom Campus, 2004.
87

The Combined Effect of Ocean Acidification and Euthrophication on water pH and Aragonite Saturation State in the Northern Gulf of Mexico

Garcia Tigreros, Fenix 03 October 2013 (has links)
Rising atmospheric carbon dioxide (CO2) concentrations are increasing the rate at which anthropogenic CO2 is accumulating in the ocean, and thereby acidifying ocean water. However, accumulation of anthropogenic CO2 is not the only process affecting coastal oceans. Anthropogenic inputs of nutrients to coastal waters can result in massive algal blooms, a process known as eutrophication. Microbial consumption of this organic matter depletes bottom waters of oxygen and increases acidity through the release of CO2. This study assesses the synergistic effect of ocean acidification and eutrophication in the coastal ocean using data from six cruises to the northern Gulf of Mexico. In addition, this study investigates the effect of the 2011 Mississippi River flood on coastal pH and aragonite saturation states. Data from a model simulation using data collected from the northern Gulf of Mexico indicates that eutrophication is contributing to acidification of subsurface waters and plays a larger role than acidification from atmospheric CO2 uptake. Furthermore, results from the model simulation show that the decrease in pH since the industrial era is 0.04 units greater than expected from ocean acidification and eutrophication combined. The additional decrease was attributed to the reduced buffering capacity of the region and may be related to the uptake of atmospheric CO2 into O2-depleted and CO2-enriched waters, the addition of atmospheric CO2 into O2-rich and CO2-poor waters, the input of CO2 via respiration into waters in equilibrium with high atmospheric CO2, or a combination of all three processes.
88

The effects of acid leaching on some physico-chemical properties of Quebec soil /

Karczewska, Hanna January 1987 (has links)
No description available.
89

Life-history variation and age at maturity in Eurasian Perch (Perca fluviatilis L.) /

Heibo, Erik, January 2003 (has links) (PDF)
Diss. (sammanfattning). Umeå : Sveriges lantbruksuniv., 2003. / Härtill 4 uppsatser.
90

Reversal of soil and water acidification in SW Sweden : simulating the recovery process /

Moldan, Filip, January 1900 (has links) (PDF)
Diss. (sammanfattning) Umeå : Sveriges lantbruksuniv. / Härtill 6 uppsatser.

Page generated in 0.0747 seconds