• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 52
  • 4
  • 3
  • 1
  • Tagged with
  • 84
  • 84
  • 50
  • 19
  • 12
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Movement and Habitat Use of Whitespotted Eagle Rays, Aetobatus narinari, throughout Florida

Unknown Date (has links)
Elasmobranchs play ecologically important roles in coastal environments. Unfortunately, the basic distribution and movement patterns of these species, particularly rays, remain relatively unknown. This is especially true for the Whitespotted Eagle Ray (Aetobatus narinari), a protected species in Florida with poorly described migratory and habitat use patterns. I employed a combination of acoustic telemetry techniques to reveal multi-scale spatial patterns of A. narinari around Florida. Movement patterns between the east and west coast individuals were distinct; a majority of west coast tagged A. narinari exhibited migratory or transient behavior while most east coast tagged individuals remained resident in the Indian River Lagoon. Fine-scale tracking of A. narinari revealed individuals spent a large percentage of time in the inlets and channels and frequently reused habitats parallel to the shore. This study fills a knowledge gap on the species ecology which may be used for adaptive management strategies throughout A. narinari’s range. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2018. / FAU Electronic Theses and Dissertations Collection
42

Acoustic tracking of an unmanned underwater vehicle using a passive ultrashort baseline array and a single long baseline beacon

Unknown Date (has links)
This thesis discusses a new approach to tracking the REMUS 100 AUV using a modified version of the Florida Atlantic University (FAU) ultrashort baseline (USBL) acoustic positioning system (APS). The REMUS 100 is designed to utilize a long baseline (LBL) acoustic positioning system to obtain positioning data in mid-mission. If the placement of one of the transponders of the LBL field is known, then tracking the position of the REMUS 100 AUV using a passive USBL array is possible. As part of the research for this thesis, the FAU USBL system was used to find a relative range between the REMUS 100 ranger and a LBL transponder. This relative range was then combined with direction of arrival information and LBL field component position information to determine an absolute position of the REMUS 100 ranger. The outcome was the demonstration of a passive USBL based tracking system. / by Kyle L. Seaton. / Thesis (M.S.C.S.)--Florida Atlantic University, 2013. / Includes bibliography. / Mode of access: World Wide Web. / System requirements: Adobe Reader.
43

Movement and Distribution of Juvenile Bull Sharks, Carcharhinus leucas, in Response to Water Quality and Quantity Modifications in a Florida Nursery

Ortega, Lori A 08 April 2008 (has links)
Movement, distribution, and habitat use of juvenile bull sharks were examined in two studies using manual and passive acoustic telemetry. Research was conducted in the Caloosahatchee River, which serves as nursery habitat for this species, and is highly impacted due to anthropogenic alterations in water quality and quantity via dams and locks. Manual tracking yielded fine-scale results for eight individuals on home range size, rate of movement, swimming depth, linearity, direction of travel, tidal influence, diel pattern, as well as correlation with environmental variables. Changes in salinity, temperature, dissolved oxygen, turbidity, and pH played a role on the distribution of bull sharks. Passive monitoring of twelve individuals allowed for examination of trends in residency, home range, depth, and distribution in response to water quality alterations. Both studies documented a shift in the distribution of animals in response to significant modifications in salinity and flow levels. Sharks were distributed throughout the river at low flow rates, but were located only near the river mouth, or exited the river at discharges rates above 75 m³s-1. Current water management policies are examined and recommendations are made which include the physiological preferences of this top-level predator.
44

An investigation into the habitat, behavior and opportunistic feeding strategies of the protected Goliath grouper (Epinephelus itajara)

Collins, Angela 08 April 2014 (has links)
Groupers (Epinephelidae: Epinephelinae) are apex predators within many reef communities worldwide. Grouper landings contribute significantly to global fisheries, and many populations are suffering from unsustainable levels of exploitation. The large size, site specificity and catchability of most groupers increase susceptibility to fishing pressure, and a large number of grouper species throughout the world are currently overfished. Multiple species are listed as endangered or threatened, and many have suffered local extirpations across their range. Removal of these upper level predators can significantly alter community structure and result in second order effects that may have critical ecological implications. The economic and ecological value of groupers is significant, and data regarding the abundance, habitat and behavior of these exploited species are necessary in order to implement realistic and effective management strategies. Atlantic Goliath Grouper (Epinephelus itajara) historically occurred in tropical and subtropical waters from the west coast of Africa to the east coast of Florida, south to Brazil, and throughout the Caribbean Sea and Gulf of Mexico. As one of the world's largest groupers, individuals are known to reach at least 37 years of age, and may grow to sizes exceeding 2.5 meters and 400 kilograms. The life history and behavioral characteristics of this species amplify vulnerability to exploitation, and Atlantic Goliath Grouper harvest was banned in U.S. waters in 1990 after a noted sharp decline in population numbers. The species has responded encouragingly to protective measures; however, the population's recovery and present status with U.S. waters should be thoroughly evaluated before altering regulatory guidelines. Traditional fishery-dependent data are not available (i.e., landings data); thus estimates of population demographics and recovery are dependent upon directed, fishery independent research efforts. It was the goal of this project to provide information regarding demographics, movement patterns, effects of catch and release angling, and feeding behavior of Atlantic Goliath Grouper within the central eastern Gulf of Mexico. The majority of research involving Atlantic Goliath Grouper began after the stock was already overfished, resulting in the absence of an existing "baseline" with which to compare current population parameters. Replication of visual surveys over a range of depths and habitat types provided an index of abundance for specific sites, and allowed for quantification of the size distribution of individuals. Atlantic Goliath Grouper were most abundant at high relief, high volume artificial reefs within the study area, and the majority of individuals observed were 80 - 160 cm in total length. Knowledge of fish movement, behavior and habitat associations has been used to exploit many species of fish; thus, this knowledge is critical for the creation of regulatory guidelines regarding conservation. Protection from harvest does not immediately imply that fishing mortality is negligible. As opportunistic ambush predators, Atlantic Goliath Grouper are relatively easy to catch on hook and line, and the species is often targeted for sport or caught incidentally during angling efforts for other reef fish species. Acoustic tracking allowed for continuous monitoring of individuals for several years after catch and release events. Barotrauma severity increased with capture depth, but immediate mortality was not observed during this study. Additionally, the length of total monitoring period was not affected by the severity of barotrauma, which suggests that with proper handling, Atlantic Goliath Grouper are not subject to high levels of release mortality in the study area (at depths < 40 m). However, strong site fidelity of Atlantic Goliath Grouper to artificial reefs increases susceptibility to fishing pressure and amplifies interactions with anglers, so the chronic effects of repeated capture remain unclear. Description and quantification of goliath grouper feeding behavior may allow for innovative suggestions to decrease the probability of catch and release mortality, and potentially offer new tactics to reduce opportunistic predation upon hooked fish. Kinematic analysis of Atlantic Goliath Grouper feeding sequences demonstrated that they are capable of modulating feeding behavior based upon prey activity level and position within the water column. Individuals exhibited larger maximum gapes and more rapid feeding sequences when presented with mobile live food. Immobile (dead) food was primarily consumed through suction, and strikes upon these items were characterized by slower, closer approaches, smaller maximum gapes and longer bite durations. It is hopeful that the information presented herein will provide insight regarding the ecology of Atlantic Goliath Grouper and can be applied to future management efforts involving this protected species.
45

Identification of objects in an acoustic waveguide numerical results and an introduction to an alternate approach via the method of images /

Udeigwe, Lawrence C. January 2006 (has links)
Thesis (M.S.)--University of Delaware, 2006. / Principal faculty advisor: Robert P. Gilbert, Dept. of Mathematical Sciences. Includes bibliographical references.
46

Efficient Communication Protocols for Underwater Acoustic Sensor Networks

Pompili, Dario 14 June 2007 (has links)
Underwater sensor networks find applications in oceanographic data collection, pollution monitoring, offshore exploration, disaster prevention, assisted navigation, tactical surveillance, and mine reconnaissance. The enabling technology for these applications is acoustic wireless networking. UnderWater Acoustic Sensor Networks (UW-ASNs) consist of sensors and Autonomous Underwater Vehicles (AUVs) deployed to perform collaborative monitoring tasks. The objective of this research is to explore fundamental key aspects of underwater acoustic communications, propose communication architectures for UW-ASNs, and develop efficient sensor communication protocols tailored for the underwater environment. Specifically, different deployment strategies for UW-ASNs are studied, and statistical deployment analysis for different architectures is provided. Moreover, a model characterizing the underwater acoustic channel utilization efficiency is introduced. The model allows setting the optimal packet size for underwater communications. Two distributed routing algorithms are proposed for delay-insensitive and delay-sensitive applications. The proposed routing solutions allow each node to select its next hop, with the objective of minimizing the energy consumption taking the different application requirements into account. In addition, a resilient routing solution to guarantee survivability of the network to node and link failures in long-term monitoring missions is developed. Moreover, a distributed Medium Access Control (MAC) protocol for UW-ASNs is proposed. It is a transmitter-based code division multiple access scheme that incorporates a novel closed-loop distributed algorithm to set the optimal transmit power and code length. It aims at achieving high network throughput, low channel access delay, and low energy consumption. Finally, an efficient cross-layer communication solution tailored for multimedia traffic (i.e., video and audio streams, still images, and scalar sensor data) is introduced.
47

Spatial and Temporal Shifts in Estuarine Nursery Habitats Used by Juvenile Southern Flounder (Paralichthys lethostigma)

Furey, Nathaniel 2012 August 1900 (has links)
Southern flounder (Parlichthys lethostigma) is a recreationally and commercially important flatfish species found in the Gulf of Mexico, and recent analyses indicate that the northern Gulf of Mexico population is in decline. For proper management, knowledge of habitats used throughout the juvenile stage is needed. The aim of the current study is to examine habitat use of young-of-year (YOY) southern flounder in the Galveston Bay complex using habitat distribution models and acoustic telemetry. A set of habitat distribution models examined how habitat use changes during the first year of life. In addition, southern flounder were tagged with acoustic telemetry transmitters and monitored with a novel receiver array that allows for measurements of fine-scale movements. These movements were compared to habitat maps to examine habitat selection. Habitat distribution models determined that habitat requirements for southern flounder change with ontogeny and season. Newly settled southern flounder were most influenced by physicochemical parameters and the presence of seagrass beds. YOY southern flounder, however, showed increased occurrence at freshwater inlets during summer and fall months, and occurrence decreased at tidal inlets during the fall. Predictions of habitat suitability across the Galveston Bay complex indicate that the factors influencing occurrence of southern flounder change with season, ontogeny, and availability of suitable habitats. With acoustic telemetry, it was apparent that habitat use by southern flounder was nonrandom and influenced by benthic and other physicochemical conditions. Habitat analyses indicated that southern flounder used sand habitats more frequently than seagrass, oyster reef, or salt marsh habitats. Telemetry results also indicated that depth and water temperature were important determinants of habitat suitability for YOY southern flounder, with individuals preferring deeper and cooler regions of the water column in Christmas Bay. Both model and telemetry analyses indicate that habitat use by YOY southern flounder is dynamic across multiple spatial and temporal scales, with distributions and movements influenced strongly by ontogenetic changes in habitat associations, temporal and spatial variability in physicochemical conditions, and tidal cycles.
48

Acoustic telemetry of the short-term movements of Octopus cyanea (Gray, 1849) in Kaneohe Bay, Hawaiʻi

Ivey, Gayla L January 2007 (has links)
Thesis (M.S.)--University of Hawaii at Manoa, 2007. / Includes bibliographical references (leaves 117-134). / x, 134 leaves, bound 29 cm
49

The spatial ecology of Albula glossodonta in the St. Joseph Atoll, Seychelles

Moxham, Emily Jeanne January 2018 (has links)
Bonefish (Albula spp.) support valuable recreational and artisanal fisheries worldwide. Declining stocks have been reported at multiple localities, potentially jeopardising numerous multimillion-dollar industries. In particular, tourism generated through bonefish fly fishing contributes considerably to the economies of many isolated tropical islands and atolls. However, despite their economic value, little is known about bonefish in the Indian Ocean. This study aimed to contribute to the understanding of bonefish ecology in the Indian Ocean by (1) reviewing the bonefish literature to identify knowledge gaps; (2) evaluating the postrelease survival of acoustically tagged bonefish and; (3) quantifying the spatial and temporal movements of bonefish at a near-pristine and predator rich atoll in the Seychelles. A review of published literature on bonefish indicated that despite considerable biological and ecological research in the Pacific and Atlantic oceans, virtually no research has been conducted in the Indian Ocean. To help address this research gap, an acoustic telemetry study was initiated at the remote St. Joseph Atoll, within an existing array of 88 automated datalogging acoustic receivers. Thirty Albula glossodonta were surgically implanted with Vemco V13 acoustic transmitters in May 2015 and tracked for a period of one year. Only 10% of the tagged bonefish were detected for more than two weeks. A comparison of the final 100 hours of movement data from fish that were detected for less than two weeks to fish detected for longer periods revealed distinct differences. These included differences in area use patterns and significant differences in the average daily distance moved, speed of movement and residency index. This suggested that mortality in the form of post-release predation was high (90%) with tagged fish detected for less than two weeks being preyed upon by sharks. The three surviving bonefish were tracked for 210 to 367 days. These individuals remained in the atoll and showed high use of the marginal habitats between the shallow sand flats and the deeper lagoon. Water temperature, diel cycle and tide were significant predictors of bonefish presence in the lagoon. The high post-release predation of bonefish has implications for the management of this and other Albula species. Despite these fisheries being catch-and-release, bonefish fishing may be unsustainable due to the high post-release mortality, particularly in areas that are rich in predators. Therefore, protected areas or limitations on fishing effort need to be considered.
50

Apport de la télémétrie acoustique pour la compréhension de l’utilisation dynamique des habitats par les poissons dans un grand fleuve aménagé, le Rhône / Contribution of the acoustic telemetry for understanding the dynamic use of habitats by fish in a large regulated river, the Rhône River

Bergé, Julien 29 June 2012 (has links)
Dans cette thèse, nous nous sommes intéressés aux réponses comportementales des poissonsd’un grand fleuve aménagé aux variations fréquentes et contrastées de l’environnement (débit,température et photopériode), de manière à comprendre (1) comment les poissons réagissent àces variations et (2) s’ils ont mis en place des stratégies comportementales en réponse à cesvariations.Le jeu de données comportementales utilisé dans cette thèse est issu d’un suivi télémétriquede 89 jours permettant l’enregistrement en continu de positions de 61 poissons, dont 23barbeaux, 19 chevaines et 11 silures. Le site d’étude est un secteur du Rhône de 2 km soumis àdes éclusées et situé au droit de la centrale nucléaire du Bugey qui rejette de l’eau échauffée enrive droite. Il est le sujet d’une modélisation hydrodynamique 2D permettant de connaitre en toutpoint du site et pour toutes valeurs du débit, les conditions abiotiques locales.De manière à connaitre la qualité des positions acquises durant le suivi télémétrique etcomprendre comment la performance du système de télémétrie est susceptible de varier au coursdu suivi des déplacements de poissons, la précision de ce système a été préalablement étudiéedans cette thèse. Pour la meilleure des combinaisons de variables intrinsèques possibles, laprobabilité de détection varie de 0 à 80 %, et l’erreur moyenne est de 3-5 m dans le chenal et <10 m en berges. La configuration géométrique des hydrophones situés autour de l’émetteuracoustique ajuste la probabilité de détection, alors que le réglage des paramètres de traitementdes signaux acoustiques ajuste l’erreur de positionnement.Les données de position couplées au modèle hydrodynamique ont permis de déterminer lespréférences d’habitat des poissons, leur distribution spatiale et leur mouvement en fonction desvariations de l’environnement (phases de la photopériode, valeur du débit et température del’eau). Les préférences d’habitat des trois espèces sont orientées vers des profondeurs < 1.4 m,des vitesses < 0.4 m.s-1 et un substrat grossier (plutôt caillou et pierre). La différence principaleest observée avec la température de l’eau : les cyprinidés préfèrent des températures < 22°C,alors que les silures préfèrent des températures > 23°C. Ces préférences d’habitat varientmajoritairement avec le débit puisque les trois espèces préfèrent à débit élevé (> 630 m3.s-1) deshabitats ayant des caractéristiques physiques hydrauliquement moins contraignantes(profondeurs et vitesses moins importantes et un substrat plus grossier). La photopériode agitprincipalement sur le mouvement des poissons (les barbeaux sont crépusculaires, les chevainesdiurnes et les silures nocturnes) alors que le débit et la température modifient la distributionspatiale des espèces. Les cyprinidés utilisent très peu la zone échauffée (< 10 % du temps) alorsque les silures passent ~ 55 % de leur temps dans cette zone. Lors des heures de débit élevé, lespoissons utilisent majoritairement les berges et exploitent rarement le chenal. Enfin, les variablesenvironnementales agissent de manière combinée sur le comportement des poissons, parexemple pour les cyprinidés qui profitent des débits faibles durant leurs phases d’activité pourexploiter temporairement des habitats devenus accessibles.Les poissons du Bugey ont donc mis en place des stratégies comportementales baséesessentiellement sur une utilisation importante des zones de berge qui leur permettent de réaliserla majorité de leurs fonctions vitales. Les différentes espèces présentent une grande fidélité àquelques habitats clé qu’ils utilisent fréquemment tout au long de la journée, mais qu’ils peuventquitter durant certaines combinaisons de variations environnementales / In this thesis, we studied the behavioral responses of fish to contrasting variations of theenvironment (flow, temperature and photoperiod) in order to understand (1) how fish react tothese changes and (2) if they have developed behavioral strategies in response to thesevariations.The behavioral data set used in this thesis comes from a continuous telemetry monitoringrealized during 89 days and recording positions of 61 fish of which 23 of barbel, 19 chub and 11catfish. The study site is an area of 2 km of the Rhone River subject to hydropeaking and locatedfront of the Bugey nuclear power plant that generates water heated on the right bank. The studysite is the subject of a 2D hydrodynamic modeling to know, at any point of the site and for allflow values, the local abiotic conditions.In order to know the quality of positions acquired during telemetric monitoring and how theperformance of the telemetry system is likely to vary during the monitoring of fish movements,the accuracy of this system has been previously studied in this thesis. To the best of possiblecombinations of intrinsic variables, the probability of detection varies from 0 to 80%, and theaverage error is 3-5 m in the channel and <10 m in banks. The geometrical configuration of thehydrophones located around the acoustic transmitter adjusts the probability of detection, whilethe setting of processing acoustic signals parameters adjusts the positioning error.The position data coupled with the hydrodynamic model were used to determine the habitatpreferences of fish, their spatial distribution and their movement, in response to changes in theenvironment (phases of photoperiod, water temperature and flow value). Habitat preferences ofthe three species are referred to depths <1.4 m, velocities <0.4 m.s-1 and coarse substrate (ratherrock and stone). The main difference is observed with the water temperature: cyprinids prefertemperatures <22 ° C, while catfish prefer temperatures> 23 ° C. These habitat preferences varymainly with the flow since the three species prefer during high flow (> 630 m3.s-1) habitats thatare hydraulically less stringent (lower speeds and depths and a coarser substrate). Photoperiodprimarily affects the movement of fish (barbel are crepuscular, the chub are diurnal and catfishare nocturnal) while the flow and temperature affect the spatial distribution of species. Cyprinidsuse very little the heated zone (<10% of the time) while catfish spend ~ 55% of their time in thisarea. During hours of high flow, the fish mostly use the banks and rarely exploit the channel.Finally, environmental variables acting in combination on fish behavior, such as cyprinids thatbenefit low flows during their phases of activity to exploit temporary habitats became available.Bugey fish have therefore implemented behavioral strategies based primarily on extensive useof shoreline areas that allow them to conduct most of their vital functions. The different speciesshow high fidelity to a few key habitats they use frequently throughout the day, but they canleave during certain combinations of environmental variations

Page generated in 0.086 seconds