• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Actin cytoskeleton regulates pollen tube growth and tropism

Bou Daher, Firas 04 1900 (has links)
La fertilisation chez les plantes dépend de la livraison des cellules spermatiques contenues dans le pollen à l’ovule. Au contact du stigmate, le grain de pollen s’hydrate et forme une protubérance, le tube pollinique, chargé de livrer les noyaux spermatiques à l’ovule. Le tube pollinique est une cellule à croissance rapide, anisotrope et non autotrophe; ainsi tout au long de sa croissance à travers l’apoplaste du tissu pistillaire, le tube pollinique puise ses sources de carbohydrates et de minéraux du pistil. Ces éléments servent à la synthèse des constituants de la paroi qui seront acheminés par des vésicules de sécrétion jusqu’à l’apex du tube. Ce dernier doit aussi résister à des pressions mécaniques pour maintenir sa forme cylindrique et doit répondre à différents signaux directionnels pour pouvoir atteindre l’ovule. Mon projet de doctorat était de comprendre le rôle du cytosquelette dans la croissance anisotrope du tube pollinique et d’identifier les éléments responsables de sa croissance et de son guidage. Le cytosquelette du tube pollinique est composé des microfilaments d’actine et des microtubules. Pour assurer une bonne croissance des tubes polliniques in vitro, les carbohydrates et les éléments de croissance doivent être ajoutés au milieu à des concentrations bien spécifiques. J’ai donc optimisé les conditions de croissance du pollen d’Arabidopsis thaliana et de Camellia japonica qui ont été utilisés avec le pollen de Lilium longiflorum comme modèles pour mes expériences. J’ai développé une méthode rapide et efficace de fixation et de marquage du tube pollinique basée sur la technologie des microondes. J’ai aussi utilisé des outils pharmacologiques, mécaniques et moléculaires couplés à différentes techniques de microscopie pour comprendre le rôle du cytosquelette d’actine lors de la croissance et le tropisme du tube pollinique. J’ai trouvé que le cytosquelette d’actine et plus précisément l’anneau d’actine localisé dans la partie sub-apicale du tube est fortement impliqué dans la croissance et le maintien de l’architecture du tube à travers le contrôle de la livraison des vésicules de sécrétion. J’ai construit une chambre galvanotropique qui peut être montée sur un microscope inversé et qui sert à envoyer des signaux tropistiques bien précis à des tubes polliniques en croissance. J’ai trouvé que les filaments d’actine sont impliqués dans la capacité du tube pollinique à changer de direction. Ce comportement tropistique dépend de la concentration du calcium dans le milieu de croissance et du flux de calcium à travers des canaux calciques. Le gradient de calcium établi dans le tube pollinique affecte l’activité de certaines protéines qui se lient à l’actine et dont le rôle est la réorganisation des filaments d’actine. Parmi ces protéines, il y a celles de dépolymérisation de l’actine (ADF) dont deux spécifiquement exprimées dans le gamétophyte mâle d’Arabidopsis (ADF7 et ADF10). Par marquage avec des proteins fluorescents, j’ai trouvé que l’ADF7 et l’ADF10 ont des expressions différentielles pendant la microsporogenèse et la germination et croissance du tube pollinique et qu’elles partagent entre elles des rôles importants durant ces différents stades. / Fertilization in plants depends on the delivery of the sperm cells in the pollen grain through the pollen tube to the ovule. The pollen tube is a highly anisotropic, fast growing cellular protuberance. Because the pollen tube is non autotrophic, it requires a steady supply of carbohydrates and minerals supplied by the pistil to sustain its growth. These elements serve for the synthesis of cell wall material, delivered to the site of cell wall assembly in secretory vesicles that are transported along the actin cytoskeleton and deposited at the growing apex of the tube. The tube has to resist external deformation forces in order to maintain its cylindrical shape and to respond to various directional signals in order to reach its target. My objectives were to identify the role of the cytoskeleton in the anisotropic growth of the pollen tube and to determine how the tube responds to directional cues. The cytoskeleton in the pollen tube consists of microfilaments and microtubules, both forming long filamentous elements. For in vitro growing pollen tubes, carbohydrates and growth minerals have to be added to the growth medium in specific amounts order to sustain pollen tube growth. I optimized the growth conditions of Arabidopsis thaliana and Camellia japonica pollen tubes which, in addition to pollen from Lilium longiflorum, were used as model species for my experiments. I developed a microwave based, fast and efficient fixation and labelling protocol for pollen tubes. I used pharmacological, mechanical, molecular and microscopical tools to study the role of the cytoskeleton in pollen tube growth and tropism. I found that the actin cytoskeleton, and more specifically the subapical actin fringe, plays an important role in the regulation of pollen tube growth and architecture through the controlled delivery of secretory vesicles to the growing apex. I constructed a galvanotropic chamber that can be mounted on an inverted microscope to induce controlled tropic triggers. I found that the actin cytoskeleton is also involved in the ability of the pollen tube to change its direction. This tropic behaviour was shown to be dependent on the concentration of calcium ions in the growth medium and calcium influx through calcium channels. The cytosolic calcium gradient in the pollen tube regulates the activity of various actin binding proteins that are responsible for remodelling the actin cytoskeleton. Among these proteins are two Arabidopsis gametophyte-specific actin depolymerizing factors (ADFs) that I tagged with two intrinsically fluorescent proteins. I found that ADF7 and ADF10 are differentially expressed during microsporogenesis and pollen tube germination and growth and that they likely divide important functions between them.
2

Actin cytoskeleton regulates pollen tube growth and tropism

Bou Daher, Firas 04 1900 (has links)
No description available.
3

Functional Characterization of Actin Sequestering Proteins in Plasmodium berghei

Hliscs, Marion 17 January 2012 (has links)
Plasmodien spp. sind obligat intrazellulär lebende Parasiten, welche einen evolutionär konservierten aktinabhängigen molekularen Motor für die Fortbewegung und den Wirtszellein- und -austritt nutzen. In dieser Arbeit werden die Aktinregulatoren Adenylyl- Zyklase- assoziierte Protein (C-CAP), Profilin sowie die Aktin depolymerizierenden Faktoren 1 und 2 (ADF1, ADF2) in Plasmodium berghei charakterisiert. Die Geninaktivierung von C-CAP besitzt keinen Einfluss auf die Entwicklung von pathogenen Blutstadien. C-cap(-) Ookineten bewegen sich jedoch deutlich langsamer, sind aber in der Lage den invertebraten Wirt zu infizieren. Defekte treten während der extrazellulären Replikationsphase im Mosquito auf und führen zu Abbruch des Lebenszykluses. Die erfolgreiche Komplementierung der Defekte mit dem orthologen Gen aus Cryptosporidium parvum CpC-CAP bestätigt die funktionale Redundanz zwischen beiden Proteinen. Profilin, als ein weiteres G-Aktin bindendes Protein, ist hingegen nicht in der Lage die Defekte des c-cap(-) Parasiten auszugleichen. Mittels transgener Parasiten welche ein C-CAPmCherry Fusionsprotein exprimieren, wird das C-CAP Protein im Zytoplasma lokalisiert. Erstmals wird mit dieser Arbeit ein G-Aktin bindendes Protein, C-CAP beschrieben, welches eine essentielle Funktion während der Oozystenreifung in Plasmodium berghei besitzt. Die Transkription der Aktinregulatoren Profilin, ADF1 und ADF2 wird in Sporozoiten drastisch herunterreguliert und Profilin kann als Protein nicht mehr nachgewiesen werden. Um die Funktion von C-CAP und Profilin zu überprüfen, wurden beide Proteine spezifisch in Sporozoiten überexprimiert. Diese Parasiten sind nicht in der Lage die Speicheldrüsen des Wirtes zu besiedeln, was zum Abbruch des Lebenszykluses führt. Anhand dieser Ergebnisse entwickele ich ein „minimalistisches“ Model zur Beschreibung der Aktinregulation in Sporozoiten in welchem das ADF1 als regulatorisches Protein im Mittelpunkt steht. / Plasmodium spp. are obligate intracellular parasites, which employ an conserved actin-dependent molecular motor machinery that facilitates their motility, host cell invasion and egress. In this work I report implications of the actin-regulators adenylyl cyclase-associated protein (C-CAP), profilin and actin depolymerization factor 1 and 2 (ADF1, ADF2) in distinct and previously unanticipated cellular processes during the life cycle of in the rodent malarial parasite Plasmodium berghei. Fluorescent tagging of the endogenous C-CAP genetic locus with mCherry revealed cytosolic distribution of the protein. Gene deletion demonstrates that the G-actin binding protein C-CAP is entirely dispensable for the pathogenic blood stages. Ookinetes show reduced motility, but are competent infecting the mosquito host. Defects emerging in the extracellular replication phase, leading to attenuation of oocyst maturation. Successful trans-species complementation with the C. parvum C-CAP ortholog, rescues the c-cap(-) phenotype and proves functional redundancy. The actin regulator profilin fails to rescue the defects of c-cap(-) parasites, despite sharing its actin sequestering activity with C-CAP. Taken together, C-CAP is the first G-actin sequestering protein of Plasmodium species that is not required for motility but performs essential functions during oocyst maturation. Characterization of the actin regulators profilin, ADF1 and ADF2 revealed dramatic transcriptional down-regulation and the absence of the profilin protein in sporozoites. To test whether G-actin binding proteins interfere with sporozoite functions, I ectopically overexpressed of profilin and C-CAP stage-specifically in sporozoites. This conducted to abolishment of salivary gland invasion and lifecycle arrest. Based on these unexpected findings and the available literature data, I developed a “minimalistic model” for actin regulation in sporozoites that predicts ADF1 as the main actin-turnover regulating factor.

Page generated in 0.0844 seconds