• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 26
  • 13
  • 8
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Genetic studies on functional redundancy between profilin1 and profilin2 in mice and the role of the profilin ligand Mena in neuronal cell function and mouse behavior

Sadowska, Agnieszka. January 1900 (has links) (PDF)
Heidelberg, Univ., Diss., 2003. / Computerdatei im Fernzugriff.
2

Charakterisierung der funktionellen Domänen von mDia1, einem Verbindungsprotein an der Schnittstelle zwischen der kleinen GTPase Rho und dem Aktin-Cytoskelett

Krebs, Anja. January 2000 (has links) (PDF)
Braunschweig, Techn. Universiẗat, Diss., 2000.
3

Profilin II novel functions in membrane-trafficking /

Gareus, Ralph. January 2001 (has links) (PDF)
Heidelberg, University, Diss., 2001.
4

Genetic studies on functional redundancy between profilin1 and profilin2 in mice and the role of the profilin ligand Mena in neuronal cell function and mouse behavior

Sadowska, Agnieszka. Unknown Date (has links) (PDF)
University, Diss., 2003--Heidelberg.
5

Das "Dual-compartment"-Protein Profilin Wechselwirkung mit einem kernständigen (SMN) und einem plasmamembranständigen (Gephyrin) Liganden /

Giesemann, Torsten. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2002--Braunschweig.
6

Characterization of profilin and actin depolymerizing factors expression and function in the testis

Sofia, Denise Michela. January 2006 (has links)
Heidelberg, Univ., Diss., 2006.
7

The Actin Filament System : Its Involvement in Cell Migration and Neurotransmitter Release

Johnsson, Anna-Karin January 2011 (has links)
The microfilament system consists of actin filaments as the major component and is regulated by a number of actin binding proteins. It is juxtaposed to the plasma membrane where it forms a dense cortical weave from where it pervades into the cell interior. This filament system has multiple roles and participates in virtually all motile processes where its dynamic activities depend on receptor mediated signaling leading to constant polymerizations and depolymerizations. These activities are now also known to affect gene regulation. This thesis discusses these dynamic reorganizations of the microfilament system and how components are supplied to support these motile processes. The focus is on profilin/profilin:actin, actin polymerization and the localization of the transcripts of these proteins. The localization of profilin mRNA was examined in relation to the distribution of β-actin mRNA using fluorescent in situ hybridization. It was concluded that both these mRNAs localize to sites of massive actin polymerization called dorsal ruffles albeit the data obtained suggests that this localization must be dependent on distinct mechanisms. Additionally signal transduction and cell motility was studied after depleting the two profilin isoforms 1 and 2. The activity of the transcription factor SRF is known to be coupled to microfilament system dynamics via the cofactor MAL which binds to actin monomers and is released upon receptor mediated actin polymerization. Depletion of profilin was seen to influence SRF dependent signaling, most likely because the lack of profilin enables more MAL to bind actin monomers thereby preventing SRF dependent transcription. Finally, it was also investigated how the synaptic vesicle protein synaptotagmin 1 which is involved in exocytosis, has a role in actin polymerization. This protein has previously been described to cause filopodia formation when ectopically expressed. A polybasic sequence motif was identified as the effector sequence for this activity and it was established that this sequence interacts with anionic lipids. It is also discussed how this sequence could have a role in neurotransmitter release and actin polymerization in the nerve synapse. / At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 3: Submitted.
8

Polarisation des pflanzlichen Aktinzytoskeletts Profiline in Arabidopsis thaliana und Petroselinum crispum /

Schütz, Ingeborg. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2004--Köln.
9

Investigation of a Misfolded, Destabilized Profilin-1 Species as a Toxic Molecule in ALS Pathogenesis

Schmidt, Eric J. 24 July 2019 (has links)
Dominant mutations in profilin-1 (PFN1) are associated with amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease characterized by motor neuron loss, paralysis, and death from respiratory failure. Our lab recently demonstrated that PFN1 mutant proteins are destabilized—they unfold at milder conditions during thermal and chemical denaturation. Furthermore, we and others have shown that mutant PFN1 is more prone to misfold and aggregate. This misfolding alters PFN1’s protein-protein interactions, as demonstrated by an affinity purification-mass spectrometry screen. While ALS-associated mutants do not show loss of interaction, several have altered interactions with several formin family proteins, a group of proteins that interacts with profilins to regulate actin polymerization. These perturbations in profilin-formin interaction result in changes in actin metabolism, as shown by stress fiber formation in a HeLa model and neurite outgrowth in an iPSC-derived neuron model. Additionally, one mutant shows increased actin filament survival time in a microfluidic experiment, indicative of tighter binding in the actin-profilin-formin complex at the growing end of a filament. Misfolding and aggregation also puts additional stress on the cell’s proteostasis pathways. A cell culture model shows that misfolded Pfn1 is processed primarily by the proteasome, with modest contributions from autophagy. Together, this evidence provides additional support for two theories of Pfn1 ALS pathogenesis: disruptions in cytoskeletal function and proteostatic stress.
10

Biochemical and Microscopic Characterization of INFT-1: an Inverted Formin in C. elegans

Li, Ying 10 May 2011 (has links)
Formins are potent regulators of actin dynamics that can remodel the actin cytoskeleton to control cell shape, cell cytokinesis, and cell morphogenesis. The defining feature of formins is the formin homology 2 (FH2) domain (Paul and Pollard, 2008), which promotes actin filament assembly while processively moving along the polymerizing filament barbed end. INFT-1 is one of six formin family members present in Caenorhabditis elegans (Hunt-Newbury et al., 2007) and is most closely related to vertebrate INF2, an inverted formin with regulatory domains in the C- rather than N-terminus. Nematode INFT-1 contains both formin homology 1 (FH1) and formin homology 2 (FH2) domains. However, it does not share the regulatory N-terminal Diaphanous Inhibitory Domain (DID) domain and C-terminal Diaphanous Autoregulatory Domain (DAD) domain found in mammalian INF2. In contrast to mammalian INF2, the sequence of INFT-1 starts immediately at FH1 domain and C-terminal region of INFT-1 shares little homology with INF2, suggesting that elegans INFT-1 is regulated by other mechanisms. We used fluorescence spectroscopy to determine the effect of INFT-1 FH1FH2 on actin assembly and total internal reflection fluorescence microscopy to investigate how INFT-1 formin homology 1 and formin homology 2 domains (FH1FH2) mediate filament nucleation and elongation. INFT-1 FH1FH2 nucleates actin filament and promote actin assembly. However, INFT-1 FH1FH2 reduces filament barbed-end elongation rates in the absence or presence of profilin. Evidences demonstrated that INFT-1 is non-processive, indicating a unique mechanism of nucleation. INFT-1 nucleation efficiency is similar to the efficiency of Arabidopsis FORMIN1 (AFH1), another non-processive formin. High phosphate affected the assembly activity of INFT-1 FH1FH2 in the absence or presence of profilin. INFT is thus the second example of a non-processive formin member and will allow a more detailed understanding of the mechanistic difference between processive and non-processive formins. / Master of Science

Page generated in 0.0417 seconds