• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Élaboration de nouveaux liants minéraux pour la formulation de bétons écologiques et durables

Balaguer Pascual, Ana January 2014 (has links)
L’industrie du ciment fait face aujourd’hui à un problème environnemental majeur dû aux émissions de CO[indice inférieur 2] lors de la production du clinker du ciment Portland (CP). Bien que des efforts soient faits pour minimiser cet impact négatif sur l’environnement par l’utilisation de sous-produits industriels lors de la fabrication du clinker ou en remplacement partiel du ciment pendant la conception du béton, le crédit carbone reste toutefois élevé. Une des solutions est de remplacer totalement le CP par une nouvelle génération de liants minéraux connus sous le nom de géopolymères qui possèdent des propriétés similaires au CP. Ces liants sont obtenus par l’activation alcaline de matériaux siliceux ou aluminosilicates. C’est dans cette optique qu’une étude basée sur l’activation de la poudre de verre provenant du verre mixte recyclé a été initiée. Il s’agit donc dans cette étude d’optimiser une formulation de poudre de verre activé pour la conception de béton écologique. Cependant, la poudre de verre étant un silicate alcalin, le liant issu de son activation est instable du fait de la teneur élevée en alcalis qui ont tendance à lixivier. Pour stabiliser les alcalis, il a été nécessaire d’ajouter du métakaolin qui a une bonne aptitude de fixation des alcalis. En raison de la grande finesse du métakaolin, son addition augmente considérablement la demande en eau des mélanges et les superplastifiants à base de polycarboxylate se sont avérés inefficaces permettant seulement l’utilisation de teneurs en MK inférieures ou égales à 8%. Par ailleurs, la teneur élevée en alcalis permet l’utilisation de solution de NaOH modérément concentrée ([NaOH]≤ 8M). Aussi, ce type de système nécessite une activation thermique à 60°C pendant au moins 2 jours suivie de la maturation des échantillons à 20°C et 50% d’humidité relative. En effet, une cure normale à 100% d’humidité relative entraine une forte lixiviation des alcalis. Dans cette étude d’optimisation, plusieurs variables influencent donc le système étudié dont les plus importants sont, entre autres : • Le temps et la température de l’activation thermique ainsi que les conditions de cure ou de maturation (température et humidité) qui sont indispensables pour contrôler la cinétique de la réaction de géopolymérisation et donc des performances mécaniques des mortiers. • La teneur en métakaolin, matériau qui a permet de fixer les alcalis à l’intérieur de la matrice géopolymère en empêchant leur lixiviation avec une amélioration progressive des performances mécaniques du mortier. • La concentration en NaOH est une des variables les plus importantes affectant le processus de géopolymérisation. Du fait de la présence d’une teneur élevée en alcalis dans le verre, son activation nécessite une concentration modérée en NaOH. Les conditions optimales d’essais ainsi définies ont permis d’élaborer des bétons à base de poudre de verre présentant des performances mécaniques satisfaisantes (20 MPa à 28 jours). Les analyses minéralogiques, microstructurales et thermiques ont permis l’identification de deux types de gels lorsque la poudre de verre est activée en présence de métakaolin : du gel C-S-H et du gel N-A-S-H. Le processus de géopolymérisation qui se déroule en plusieurs étapes, dont la dissolution, la polymérisation et la condensation-réorganisation a pu être mis en évidence par des analyses calorimétriques.
2

Géopolymérisation et activation alcaline des coulis d’injection : structuration, micromécanique et résistance aux sollicitations physico-chimiques / Geopolymerization and alkali-activation of injection grouts : structuration, micromechanics and resistance to physicochemical effects

Cherki El Idrissi, Anass 14 December 2016 (has links)
La nécessité de construire de manière durable, rationnelle et écologique incite à l’innovation et la recherche d’alternatives, telles que la géopolymérisation et l’activation alcaline, qui suscitent un intérêt croissant. Dans ce sens, ces technologies permettent de valorise rdes matières premières à plus faible impact environnemental pour le développement d’une nouvelle famille de matériaux. Cependant, ces mécanismes réactionnels sont complexes et il est encore nécessaire de lever plusieurs verrous avant leur implémentation : la confusion entre les deux processus, l’absence d’approches de formulation rationnelles, la méconnaissance de certaines vulnérabilités, etc. La thèse s’intègre dans cette dynamique et a pour objectif une meilleure connaissance des géopolymères et des matériaux alcali-activés. Le cadre de travail est le développement de coulis d’injection. Un programme expérimental basé sur une sélection de compositions est établi afin de caractériser leurs principales propriétés. Les différences entre les deux processus de structuration sont relevées à travers une étude physico-chimique (DRX, RMN) et liées aux évolutions macroscopiques au jeune âge. Un travail d’optimisation de formulation est mené afin de répondre à des critères d’application et définir les paramètres influençant le comportement rhéologique et mécanique des coulis. Une méthodologie basée sur l’analyse micromécanique et l’homogénéisation multi-échelles a permis d’évaluer le module élastique des matériaux et peut servir de plateforme pour une analyse globale du comportement mécanique. Enfin, une étude de la durabilité est entamée en évaluant la sensibilité au séchage et à la lixiviation en milieu acide. / The need for more durable, rational and ecological constructions encourages innovation and the search for alternatives, such as geopolymerization and alkali-activation, with a growing interest. These technologies allow the use of resources with a lower environmental impact in developing a new class of materials. However, both reaction mechanisms are complex and some issues need further investigation before a proper implementation: the confusion between these processes, the absence of a rational design approach, the lack of knowledge concerning some mechanisms of degradation, etc. The present thesis joins this dynamic and aims at a better understanding of geopolymers and alkali activated materials to design soil injection grouts. An experimental program has been established based on selected mix designs to study their main properties. The differences between both structuration processes were determined through a physicochemical study (XRD, NMR). They were correlated to the macroscopic phenomena observed at early age. An optimization of the mixtures was carried to satisfy the application criteria and define the parameters controlling the rheological and mechanical behavior of the grouts. Using a micromechanical characterization and multiscale homogenization, a methodology has been designed to determine the elastic modulus of the materials.This can be used as a first tool to analyze the global mechanical behavior. Finally, the sensitivity to drying and exposure to acid environments was assessed.
3

Mise en place d’une brique géopolymère pour la construction durable : études géotechnique, environnementale et économique / Geopolymer brick implementation for sustainable construction : geotechnical, environmental and economic studies

Youssef, Nicolas 14 June 2019 (has links)
Après la crise économique en 2008, l’activité de construction en France a connu une croissance très rapide. La hausse de la demande des matériaux de construction était accompagnée d’une augmentation des quantités de déchets de construction et de CO2 émise. En 2018, l’émission de CO2 liée aux activités humaines a atteint un niveau historique mondial de 37.1 milliards de tonnes. Ceci encourage le développement des matériaux de construction qui répondent aux besoins mutants de la société d’aujourd’hui et de demain. Les géopolymères, préparés par activation alcaline, présentent une opportunité pour produire des nouveaux matériaux plus performants et respectueux de l’environnement dans le secteur de la construction. D’autre part, l’industrialisation et la robotisation font apparition dans le secteur de la construction, avec des nombreux avantages tels que l’augmentation de la productivité, la réduction des gaspillages, du coût et de la pénibilité du travail, ainsi que l’amélioration de la qualité et la sécurité.Ce travail de recherche est mené pour répondre à ces défis et verrous scientifiques. Il est réparti selon trois axes : l’élaboration de nouvelles formulations de briques géopolymères, l’intégration des matériaux géopolymères dans le processus d’industrialisation et de robotisation de la construction, et enfin l’évaluation de l’impact environnemental et économique du nouveau système de fabrication automatisé. / After the economic crisis in 2008, construction activity in France grew rapidly. The increase in demand for building materials was accompanied by an increase in the quantities of construction waste and emitted CO2. In 2018, CO2 emissions from human activities reached a world historic level of 37.1 billion tons. This encourages the development of building materials that meet the changing needs of today's and tomorrow's society. Geopolymers, prepared by alkaline activation, present an opportunity to produce new, more efficient and environment-friendly materials in the construction sector. On the other hand, industrialization and robotization are emerging in the construction sector, with many benefits such as increased productivity, reduced waste, cost and arduous work, as well as improved quality and safety.This doctoral thesis is being conducted to address these scientific challenges and issues. These are divided into three research directions: the development of new geopolymer brick formulations, the integration of geopolymer materials into the industrialization and robotization of construction processes, and finally the environmental and economic assessment of the new automated manufacturing system.

Page generated in 0.0961 seconds