• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude des Récepteurs Tyrosine Kinase du parasite helminthe Schistosoma mansoni - Découverte des Venus Kinase Récepteurs, une nouvelle famille de RTK

Ahier, Arnaud 12 December 2008 (has links) (PDF)
La schistosomiase constitue un problème majeur de santé publique dans de nombreux pays émergents d'Afrique, d'Amérique Latine et d'Asie du Sud Est, causant près de 300 000 décès par an. Cette maladie est due au schistosome qui est un ver parasite possédant un cycle de vie complexe. A ce jour une seule drogue est utilisée en monothérapie, le praziquantel ou PZQ, pour lutter contre cette maladie. En raison d'apparitions de résistances au PZQ, il devient nécessaire de rechercher de nouvelles cibles thérapeutiques contre le ver. Au cours de ma thèse je me suis penché sur l'utilisation potentielle des Récepteurs Tyrosine Kinase (RTK) de schistosomes comme cibles thérapeutiques contre le parasite. En effet, les kinases du schistosome semblent présenter un fort degré de spécificité, ce qui les rend attractives pour le l'élaboration d'inhibiteurs potentiels. Dans ce cadre, nous avons poursuivi l'étude de SmIR-1, un récepteur de l'insuline de Schistosoma mansoni découvert au laboratoire, et montré qu'il pouvait être impliqué dans la prise de glucose chez le parasite. Dans un second temps, à partir d'un RTK totalement atypique décrit au laboratoire chez S. mansoni, nous avons découvert une nouvelle famille de RTK nommés les VKR pour Venus Kinase Recepteur, qui semblerait étendue à l'ensemble des invertébrés et dont nous avons entrepris l'étude fonctionnelle
2

Protection of primary cultures of mouse hepatocytes against fas-induced apoptosis : role of EGF receptor intrinsic activity and intracellular redox state

Musallam, Lina January 2003 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
3

Implication du récepteur à activité tyrosine kinase (RTK) MET sur la balance survie/apoptose et identification de nouvelles mutations de RTKs dans les cancers colorectaux métastatiques / Involvement of the receptor tyrosine kinase (RTK) MET on the survival/apoptosis balance and identification of new RTKs mutations in metastatic colorectal cancers

Duplaquet, Leslie 20 December 2018 (has links)
Les RTKs sont impliqués dans le dialogue au sein des tissus par la régulation de nombreuses réponses cellulaires dont la survie, la prolifération ou la mobilité. Dans les cancers, ces récepteurs sont fréquemment dérégulés notamment par des mutations activatrices. Ainsi, la suractivation des RTKs induit la transformation cellulaire et la tumorigenèse en favorisant par exemple la survie cellulaire. Depuis le début des années 2000, le développement de molécules inhibitrices de l’activité tyrosine kinase (TKI) et d’anticorps bloquant l’interaction ligand/récepteur ont montré que les RTKs représentent des cibles thérapeutiques majeures dans le traitement des cancers.MET est un RTK exprimé par les cellules épithéliales, dont le ligand est l’Hepatocyte Growth Factor/Scatter Factor (HGF/SF). En plus de son rôle pro-survie, MET peut également favoriser l’apoptose en absence de ligand et sous l’effet d’un stress. MET est alors clivé par les caspases et libère dans le cytosol un fragment de 40 kDa nommé p40MET. Ce fragment active la voie intrinsèque de l’apoptose en causant la perméabilisation des mitochondries. Cependant, les mécanismes moléculaires responsables de cette perméabilisation et l’impact physiologique de la fonction pro-apoptotique de MET étaient encore inconnus.Mon travail de thèse a permis de démontrer que le fragment p40MET se localise dans la région des MAMs, constituant l’interface entre le réticulum endoplasmique et les mitochondries, où il favorise un transfert de calcium entre les deux organites. Ce transfert déclenche une surcharge de calcium dans les mitochondries, responsable de leur perméabilisation. De plus, nous avons développé une lignée de souris transgéniques dans lesquelles MET est muté sur l’un des sites caspases. Ces souris sont incapables de produire le fragment p40MET pro-apoptotique. Ce modèle nous a permis de démontrer l'importance du clivage de MET dans l’amplification de l’apoptose in vivo. Ainsi, nos travaux apportent les premières preuves de la fonction de MET en tant que récepteur à dépendance au sein d’un organisme et décrivent un nouveau mécanisme de signalisation pro-apoptotique par la dérégulation des flux calciques.Ces dernières années, la découverte de mutations touchant les RTKs dans les cancers a augmenté de façon exponentielle. Toutefois, pour une grande majorité de mutations, leurs conséquences fonctionnelles sont totalement inconnues. Ainsi, en parallèle de mon principal sujet de thèse nous avons évalué la pertinence biologique et clinique des mutations de RTK identifiées par séquençage haut débit à partir d’échantillons de patients. Le séquençage de tissus sains, de tumeurs colorectales et de métastases hépatiques de 30 patients a permis d'identifier de nombreuses mutations somatiques. Parmi elles, certaines affectent le domaine kinase des récepteurs et sont présentes à la fois dans les tumeurs et les métastases. L’analyse fonctionnelle que j’ai menée sur 7 de ces mutations révèle qu’elles ne provoquent ni la suractivation de la kinase ni la transformation des fibroblastes NIH3T3. Au contraire, deux mutations de RTKs provoquent une inhibition drastique de leur activité kinase. Ces résultats démontrent que ces variants de RTK ne sont pas des cibles appropriées pour l’utilisation de TKI à des fins thérapeutiques et démontre l’intérêt de coupler la recherche de variants à des études fonctionnelles [...] / RTKs are involved in tissue dialogue by regulating many cellular mechanisms such as survival, proliferation or mobility. In cancers, these receptors are frequently deregulated, as a result of various molecular alterations leading to their activation. RTKs overactivation induces cell transformation and tumorigenesis notably by promoting survival. Since the early 2000s, the development of tyrosine kinase inhibitors (TKI) demonstrated that RTKs represent major therapeutic targets in cancer treatment.MET receptor and its ligand the Hepatocyte Growth Factor/Scatter Factor (HGF/SF) are known to promote survival of many epithelial structures during embryogenesis and later during adulthood. Besides pro-survival role of the ligand-activated MET, the receptor is also able to promote apoptosis, which has led to classify it within the dependence receptor family. Indeed, in absence of its ligand and under stress conditions, MET is cleaved by caspases leading to the production of an intracellular fragment of nearly 40 kDa named p40MET able to amplify apoptosis. This fragment activates the intrinsic pathway of apoptosis by causing mitochondrial permeabilization. However, the molecular mechanisms involved in this permeabilization and the physiological impact of the pro-apoptotic function of MET were still unknown.My PhD work has evidenced p40MET localization at the MAM microdomain and characterized a calcium transfer from the endoplasmic reticulum to the mitochondria triggered by p40MET. This calcium transfer triggers a calcium overload in mitochondria leading to their membrane permeabilization and apoptosis. In addition, we engineered a knock-in mouse model expressing mutated MET at the C-terminal caspase site. These mice are unable to produce the pro-apoptotic p40MET fragment. This model allowed us to assess the importance of MET cleavage in physiological apoptosis in vivo. Altogether, our work brings the first evidence for MET function as a dependence receptor in an organism and demonstrates a new signaling mechanism involved in apoptosis amplification by p40MET through calcium flux deregulation. This process may be relevant in the physio-pathology of organs where MET is expressed.In recent years, the discovery of mutations affecting RTKs in cancers has increased exponentially. However, for a large majority of mutations, their functional consequences are totally unknown. Thus, in parallel of my main thesis topic, we evaluated the biological and clinical relevance of RTKs mutations identified by high throughput sequencing from patient samples. Sequencing of healthy tissues, colorectal tumours and liver metastases of 30 patients has identified many somatic mutations. Some of them affect the receptor kinase domain and are present in both tumors and metastases. Functional analysis of 7 of these mutations shows that they do not cause neither kinase overactivation nor transformation of NIH3T3 fibroblasts. On the contrary, two RTK mutations cause drastic inhibition of the corresponding kinase activity. These findings indicate that these RTK variants are not suitable targets for TKI. Therefore, it appears important to set up reliable functional assays to interpret identified variants and classify them as pathogenic or neutral.In conclusion, my work opens up new perspectives on therapeutic strategies targeting RTKs in cancers. First of all, the pro-apoptotic capacities of some RTKs are undoubtedly a brake to tumorigenesis, and their stimulations could reinforce the effectiveness of anti-cancer therapies. On the other hand, we have shown that RTKs mutations in the kinase domain do not necessarily lead to overactivation of the receptor suggesting that they are probably not involved in tumorigenesis and that treatment with TKIs targeting them would be ineffective. This functional information could notably influence the choice of a suitable targeted therapy.
4

Signalisation et ciblage thérapeutique du récepteur tyrosine kinase AXL dans les cancers / Signaling and targeting of the Tyrosine Kinase Receptor AXL in cancer

Leconet, Wilhem 28 January 2014 (has links)
AXL est un récepteur tyrosine kinase (RTK) impliqué dans de nombreux mécanismes cellulaires tels que la migration, l'invasion, l'angiogenèse et la prolifération des cellules. Sa surexpression a été observée dans de nombreux cancers et est souvent liée à un mauvais pronostic vital pour le patient. De plus, ce récepteur semble agir dans un mécanisme important dans la formation de métastases et la résistance aux thérapies anticancéreuses : la transition épithélio-mésenchymateuse (EMT). Nous avons dans un premier temps généré des anticorps monoclonaux murins spécifiques du récepteur AXL. Deux de ces anticorps ont ensuite été sélectionnés pour leurs propriétés inhibitrices de l'expression d'AXL à la surface et de l'activation de ce récepteur par son ligand GAS6. En effet ces deux anticorps, le 20G7D9 et le 3E3E8, entraine l'internalisation et la dégradation lysosomale d'AXL.Nous avons dans un deuxième temps étudié l'expression et le rôle de ce récepteur dans le cancer du pancréas qui possède un manque cruel de solutions thérapeutiques aujourd'hui et dont le taux de survie reste très faible (moins 5% des patients survivent 5 ans après son diagnostic). Nous avons ainsi observé une expression d'AXL dans une majorité des tumeurs de patients (76%), notamment au niveau du front invasif de ces tumeurs. Le ciblage d'AXL par nos deux anticorps inhibe sa signalisation et permet une réduction in vitro et in vivo de la croissance tumorale.Enfin, l'importante expression d'AXL dans le front invasif des tumeurs nous a incité à étudier le rôle d'AXL au cours de la transition épithélio-mésenchymateuse. Nous avons ainsi démontré que le couple AXL/GAS6 induit l'EMT dans des modèles invasifs de cancer du sein triple négatifs. De plus, l'expression du récepteur dans des tumeurs de cancer du sein de type basal-like est corrélée à celle de différents marqueurs importants dans l'EMT. L'application de nos anticorps anti-AXL dans ce type de cancer permet d'inhiber l'induction de l'EMT par le récepteur ainsi que l'invasion cellulaire in vitro et in vivo.Cette thèse a ainsi permis de démontrer l'importance du récepteur tyrosine kinase AXL dans des mécanismes oncogéniques clés et l'efficacité de son ciblage par des anticorps monoclonaux dans des modèles précliniques de cancer. / The Tyrosine Kinase Receptor (TKR) AXL is implicated in various cellular mechanisms (migration, invasion, angiogenesis and cell proliferation). Its overexpression has been observed in many cancers and is often correlated with poor prognosis. Moreover, this receptor seems to be important in Epithelial to Mesenchymal Transition (EMT), a mechanism related to metastasis formation and resistance to anticancer therapies.We have generated several AXL specific murine monoclonal antibodies. Two of them, 20G7D9 and 3E3E8, have been selected for their inhibition properties in AXL expression and activation by its ligand GAS6. In fact, both antibodies induce internalization and lysosomal degradation of AXL.Then we decided to study AXL expression and role in pancreatic cancer, which is characterized by a dramatic overall survival (<5%, 5 years after diagnosis) and a lack of efficient therapeutic solutions. We observed an ectopic expression of AXL in a majority of patient' pancreatic tumors (76%), notably in the invasive front of the tumor. Targeting AXL with both 20G7D9 and 3E3E8 inhibits its signaling and decreases tumor growth in vitro and in vivo.As AXL is mainly expressed in the invasive front of tumors, we analyzed its role during EMT. We observed that AXL/GAS6 signaling induces EMT in triple negative breast cancer cell lines. Furthermore, its expression is correlated with well-defined EMT markers in basal-like breast cancer tumors. In vitro and in vivo application of our antibodies inhibits AXL-dependant EMT signaling and cellular migration and invasion.In conclusion, this thesis demonstrates the importance of AXL Tyrosine Kinase Receptor in oncogenic processes and the efficacy of targeting this receptor with monoclonal antibodies in cancer preclinical models.
5

Fonctions nucléaires du récepteur de CSF-1 dans les monocytes humains / CSF-1 receptor nuclear functions in human monocytes

Bencheikh, Laura 22 November 2017 (has links)
CSF-1R (colony-stimulating factor 1 receptor) est un récepteur transmembranaire à activité tyrosine kinase exprimé à la surface des monocytes, des macrophages et de leurs progéniteurs. Son ligand, CSF-1, oriente les cellules souches hématopoïétiques vers le lignage myéloïde et permet la différenciation des monocytes en macrophages. Une localisation nucléaire de CSF-1R a été décrite dans certaines lignées tumorales, dans des tumeurs mammaires primitives et dans les macrophages murins. Dans le noyau de ces cellules, CSF-1R régulerait la phosphorylation de protéines nucléaires et l'expression de gènes de la prolifération. Nous avons identifié une localisation nucléaire de CSF-1R dans les monocytes primaires humains par différentes approches et différents anticorps. La forme nucléaire de CSF-1R correspond à la protéine entière monomérique qui est transportée depuis la membrane plasmique vers le noyau, de manière rétrograde, après activation par son ligand et avec celui-ci. L'utilisation d'inhibiteurs de l'activité kinase de CSF-1R diminue la quantité de récepteur dans le noyau. En revanche le blocage des mécanismes d'export nucléaire dépendant de CRM1 par la leptomycine B conduit à l'accumulation de la protéine dans ce compartiment. Dans les monocytes, CSF-1R est localisé sur la chromatine, dans les régions intergéniques et introniques et colocalise avec la marque H3K4me1 présente au niveau des enhancers activés. CSF-1R est situé à proximité de gènes régulant la morphogénèse, le développement du système nerveux, l'ossification et la différenciation cellulaire. Le récepteur est présent sur le promoteur du gène PU.1, facteur de transcription clé dans la différenciation myéloïde et la génération des monocytes, ainsi que sur des gènes impliqués dans la différenciation, la polarisation, la survie et les fonctions des macrophages. Au niveau de la chromatine, CSF-1R interagit avec des facteurs de transcription comme EGR1 sur lequel il exerce un effet co-répresseur. Cette localisation nucléaire de CSF-1R est conservée lorsque les monocytes se différencient en macrophages en réponse à CSF-1. CSF-1R nucléaire est alors relocalisé vers les régions promotrices et exoniques où il colocalise avec la marque H3K4me3. Il est présent à proximité de gènes régulant la vascularisation, la phagocytose, le métabolisme, la réponse au stress et à l'hypoxie. Il interagit avec les facteurs de transcription ELK1 et YY1, et joue un rôle de co-activateur. Lorsque les monocytes sont différenciés en macrophages par une autre cytokine, le GM-CSF, CSF-1R reste dans le noyau des cellules mais sa localisation sur la chromatine et ses interacteurs diffèrent de ceux des monocytes et des macrophages générés par CSF-1, démontrant un régulation différentielle de CSF-1R nucléaire selon le stade de différenciation et les signaux environnementaux. Dans des monocytes de patients atteints de leucémie myélomonocytaire chronique, l’expression, la localisation sur l’ADN et les interacteurs de CSF-1R sont modifiés, indiquant une dérégulation des fonctions nucléaires du récepteur en condition pathologique. CSF-1R est donc localisé dans le noyau des monocytes et des macrophages où il exerce un rôle de régulation de l'expression des gènes dont PU.1. Des résultats préliminaires suggèrent une localisation nucléaire du récepteur dans certaines populations de progéniteurs myéloïdes où il pourrait participer à la regulation de la différenciation. De nombreux inhibiteurs de CSF-1R sont en développement afin de cibler les macrophages infiltrant les tumeurs. Nos résultats démontrent que certains inhibiteurs ont la capacité de cibler la forme membranaire et la forme nucléaire du récepteur et donc d'inhiber l'ensemble des activités de CSF-1R dans les cellules, renforçant l'activité potentielle de ces traitements. / CSF-1R (colony-stimulating factor 1 receptor) is a transmembrane receptor with a tyrosine kinase activity. It is expressed at the cell surface of monocytes, macrophages and their progenitors. Its ligand, CSF-1, has an instructive role on hematopoietic stem cells to direct their differentiation into the myeloid lineage. CSF-1R is also able to differentiate monocytes into macrophages. A nuclear location was described for CSF-1R in cancer cell lines, primary breast tumors and murine macrophages. In the cell nucleus, CSF-1R was suggested to regulate nuclear protein phosphorylation and gene expression. We demonstrate that a small part of CSF-1R is in the nucleus of primary human monocytes, using different antibodies and technical approaches. Nuclear CSF-1R corresponds to full length monomeric receptor. After activation by its ligand, CSF-1R is translocated form cell surface to the nucleus through a retrograde transport, together with CSF-1. Kinase activity inhibitors impaired this process while inhibitors of CRM1-dependant nuclear export (leptomycin B) can revert this effect. In monocytes, CSF-1R is localized on chromatin, mainly on intergenic and intronic regions. It colocalizes with H3K4me1 mark which signs active enhancers. The receptor is present around genes involved in morphogenesis, nervous system development, ossification and cell differentiation. CSF-1R is also located on PU.1 promoter, which is a master transcription factor involved in myeloid and monocyte differentiation. CSF- 1R is also present on genes implicated in macrophage functions, differentiation, polarization and survival. At the chromatin level, CSF-1R interacts with different transcription factors like EGR1 and exerts a co-repressive role to decrease or limit gene expression. CSF-1R nuclear localization persists in macrophages generated by exposure of monocytes to CSF-1. It entails CSF-1R relocalization on promoter-TSS and exonic regions where it colocalizes with H3K4me3 mark. The receptor is close to genes regulating vascularization, phagocytosis, metabolism, stress and hypoxia responses. CSF-1R interacts with ELK1 and YY1 to promote macrophage functions. When monocytes are differentiated into macrophages with GM-CSF, CSF-1R also remains in the nucleus. However, its chromatin localization and interactions change compared to monocytes and CSF-1 differentiated macrophages. This indicates that nuclear CSF-1R is differentially regulated, depending on the cytokine that triggers cell differentiation. In monocytes from chronic myelomonocytic leukemia, CSF-1R expression, chromatin localization and interactors are modified, indicating a deregulated CSF-1R nuclear function under pathological state. Altogether, we showed that CSF-1R is localized in the nucleus of human monocytes and macrophages where it regulates gene expression including PU.1. Preliminary results suggest CSF-1R nuclear location in myeloid progenitor subsets where the receptor could directly regulate the expression of myeloid differentiation genes. Targeting CSF-1R is currently tested as a therapeutic strategy to impair tumor infiltrating macrophages. Our results show that CSF-1R inhibitors are able to target both membrane and nuclear forms and thus to inhibit all CSF-1R activities in the cells, enhancing the potential therapeutic effects of these molecules.

Page generated in 0.0706 seconds