• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 116
  • 17
  • 8
  • 7
  • 4
  • 2
  • 1
  • Tagged with
  • 217
  • 62
  • 55
  • 55
  • 22
  • 22
  • 21
  • 21
  • 19
  • 18
  • 17
  • 15
  • 15
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Fabrication and Characterization of New Passive and Active Polymer Gels with Tailored Properties

In, Eunji 01 January 2011 (has links)
In this thesis, three different types of polymer-based gels are fabricated and characterized for passive and active applications. Silica aerogel is a 3D mesoporous solid material that can be used for thermal insulation or in the biomedical industry. In this thesis, silica aerogel is cross- linked with diisocyanate to improve its strength and flexibility, which greatly opens up the range of applications. Then, soft polymer gel with tissue equivalent characteristics is fabricated to mimic the spin-lattice (T1) and spin-spin (T2) relaxation times for the magnetic resonance imaging (MRI) phantom of a liver with lesions. This study demonstrates a relationship between the composition of a gelling agent, and T1 and T2 modifiers on its dielectric, mechanical and imaging properties. Finally, an ionic electroactive polymer (EAP) that can be actuated on an electric field is fabricated, and its swelling and bending behaviours on design parameters are closely examined.
82

Fabrication and Characterization of New Passive and Active Polymer Gels with Tailored Properties

In, Eunji 01 January 2011 (has links)
In this thesis, three different types of polymer-based gels are fabricated and characterized for passive and active applications. Silica aerogel is a 3D mesoporous solid material that can be used for thermal insulation or in the biomedical industry. In this thesis, silica aerogel is cross- linked with diisocyanate to improve its strength and flexibility, which greatly opens up the range of applications. Then, soft polymer gel with tissue equivalent characteristics is fabricated to mimic the spin-lattice (T1) and spin-spin (T2) relaxation times for the magnetic resonance imaging (MRI) phantom of a liver with lesions. This study demonstrates a relationship between the composition of a gelling agent, and T1 and T2 modifiers on its dielectric, mechanical and imaging properties. Finally, an ionic electroactive polymer (EAP) that can be actuated on an electric field is fabricated, and its swelling and bending behaviours on design parameters are closely examined.
83

Development of a New Fully Flexible Hydraulic Variable Valve Actuation System

Pournazeri, Mohammad 22 May 2012 (has links)
The automotive industry has been in a marathon of advancement over the past decades. This is partly due to global environmental concerns about increasing amount of air pollutants such as NOx (oxides of nitrogen), CO (carbon monoxide) and particulate matters (PM) and decreasing fossil fuel resources. Recently due to stringent emission regulations such as US EPA (Environmental Protection Agency) and CARB (California Air Resource Board), improvement in fuel economy and reduction in the exhaust gas emissions have become the two major challenges for engine manufacturers. To fulfill the requirements of these regulations, the IC engines including gasoline and diesel engines have experienced significant modifications during the past decades. Incorporating the fully flexible valvetrains in production IC engines is one of the several ways to improve the performance of these engines. The ultimate goal of this PhD thesis is to conduct feasibility study on development of a reliable fully flexible hydraulic valvetrain for automotive engines. Camless valvetrains such as electro-hydraulic, electro-mechanical and electro-pneumatic valve actuators have been developed and extensively studied by several engine component manufacturers and researchers. Unlike conventional camshaft driven systems and cam-based variable valve timing (VVT) techniques, these systems offer valve timings and lift control that are fully independent of crankshaft position and engine speed. These systems are key technical enablers for HCCI, 2/4 stroke-switching gasoline and air hybrid technologies, each of which is a high fuel efficiency technology. Although the flexibility of the camless valvetrains is limitless, they are generally more complex and expensive than cam-based systems and require more study on areas of reliability, fail safety, durability, repeatability and robustness. On the contrary, the cam-based variable valve timing systems are more reliable, durable, repeatable and robust but much less flexible and much more complex in design. In this research work, a new hydraulic variable valve actuation system (VVA) is proposed, designed, prototyped and tested. The proposed system consists of a two rotary spool valves each of which actuated either by a combination of engine crankshaft and a phase shifter or by a variable speed servo-motor. The proposed actuation system offers the same level of flexibility as camless valvetrains while its reliability, repeatability and robustness are comparable with cam driven systems. In this system, the engine valve opening and closing events can be advanced or retarded without any constraint as well as the final valve lift. Transition from regenerative braking or air motor mode to conventional mode in air hybrid engines can be easily realized using the proposed valvetrain. The proposed VVA system, as a stand-alone unit, is modeled, designed, prototyped and successfully tested. The mathematical model of the system is verified by the experimental data and used as a numerical test bench for evaluating the performance of the designed control systems. The system test setup is equipped with valve timing and lift controllers and it is tested to measure repeatability, flexibility and control precision of the valve actuation system. For fast and accurate engine valve lift control, a simplified dynamic model of the system (average model) is derived based on the energy and mass conservation principles. A discrete time sliding mode controller is designed based on the system average model and it is implemented and tested on the experimental setup. To improve the energy efficiency and robustness of the proposed valve actuator, the system design parameters are subjected to an optimization using the genetic algorithm method. Finally, an energy recovery system is proposed, designed and tested to reduce the hydraulic valvetrain power consumption. The presented study is only a small portion of the growing research in this area, and it is hoped that the results obtained here will lead to the realization of a more reliable, repeatable, and flexible engine valve system.
84

Active flow control of a precessing jet

Babazadeh, Hamed 06 1900 (has links)
Active flow control of a precessing jet is the focus of this work. A round jet confined by a round cavity exhibits a self-excited rotational motion, precession, for a specific range of cavity lengths. Active flow control of this unstable flow provides the ability to control near-field mixing of the precessing jet. Twelve micro-jets on the periphery of the nozzle inlet are used as actuation and near-field pressure data is measured by four pressure probes at the chamber exit to monitor the flow behavior. A phase plane, based on pressure signals, is used to find a Reynolds number and actuation frequency range where actuation stabilizes the flow motion. Phase-locked stereoscopic PIV is also used to validate the pressure processing tool. The results confirm the pressure measurement and micro-jet actuation can be employed to develop a future closed-loop flow control on a precessing jet.
85

The role of passive joint stiffness and active knee control in robotic leg swinging: applications to dynamic walking

Migliore, Shane A. 04 January 2008 (has links)
The field of autonomous walking robots has been dominated by the trajectory-control approach, which rigidly dictates joint angle trajectories at the expense of both energy efficiency and stability, and the passive dynamics approach, which uses no actuators, relying instead on natural mechanical dynamics as the sole source of control. Although the passive dynamics approach is energy efficient, it lacks the ability to modify gait or adapt to disturbances. Recently, minimally actuated walkers, or dynamic walkers, have been developed that use hip or ankle actuators---knees are always passive---to regulate mechanical energy variations through the timely application of joint torque pulses. Despite the improvement minimal actuation has provided, energy efficiency remains below target values and perturbation rejection capability (i.e., stability) remains poor. In this dissertation, we develop and analyze a simplified robotic system to assess biologically inspired methods of improving energy efficiency and stability in dynamic walkers. Our system consists of a planar, dynamically swinging leg with hip and knee actuation. Neurally inspired, nonlinear oscillators provide closed-loop control without overriding the leg's natural dynamics. We first model the passive stiffness of muscles by applying stiffness components to the joints of a hip-actuated swinging leg. We then assess the effect active knee control has on unperturbed and perturbed leg swinging. Our results indicate that passive joint stiffness improves energy efficiency by reducing the actuator work required to counter gravitational torque and by promoting kinetic energy transfer between the shank and thigh. We also found that active knee control 1) is detrimental to unperturbed leg swinging because it negatively affects energy efficiency while producing minimal performance improvement and 2) is beneficial during perturbed swinging because the perturbation rejection improvement outweighs the reduction in energy efficiency. By analyzing the effects of applying passive joint stiffness and active knee control to dynamic walkers, this work helps to bridge the gap between the performance capability of trajectory-control robots and the energy-efficiency of passive dynamic robots.
86

Material Characterization of a Dielectric Elastomer for the Design of a Linear Actuator

Helal, Alexander Tristan January 2017 (has links)
Electrical motors and/or hydraulics and pneumatics cylinders are commonly used methods of actuation in mechanical systems. Over the last two decades, due to arising market needs, novel self-independent mobile systems such as mobility assistive devices have emerged with the help of new advancements in technology. The actuation criteria for these devices differ greatly from typical mechanical systems, which has made the implementation of classical actuators difficult within modern assistive devices. Among the numerous challenges, limited energy storage capabilities by mobile systems have restricted their achievable operational time. Furthermore, new expectations for device weight and volume, as well as actuator structural compliance, have added to this quandary. Electroactive polymers, a category of smart materials, have emerged as a strong contender for the use in low-cost efficient actuators. They have demonstrated great potential in soft robotic and assistive device/prosthetic applications due to their actuation potential and similar mechanical behaviour to human skeletal muscles. Dielectric Elastomers, in particular, have shown very promising properties for these types of applications. Their structures have shown large achievable deformation, while remaining light-weight, mechanically efficient, and low-cost. This thesis aims to characterize, and model the behaviour of 3MTM VHB polyacrylic dielectric elastomer, in order to establish a foundation for its implementation in a proposed novel linear actuator concept. In this thesis, a comprehensive experimental evaluation is accomplished, which resulted in the better understanding of the elastomer’s biaxial mechanical and electro-mechanically coupled behaviours. Subsequently, a constitutive biaxial mechanical model was derived in order to provide a predictive design equation for future actuator development. This model proved effective in providing a predictive tool for the biaxial mechanical tensile response of the material. Finally, a simplified prototype was devised as a proof of concept. This first iteration applied experimental findings to validate the working principles behind the proposed actuator design. The results confirmed the proof of concept, through achieved reciprocal linear motion, and provided insight into the design considerations for prototype optimization and final actuator development.
87

TORQUE RESPONSE OF THIN-FILM FERROMAGNETIC PRISMS IN UNIFORM MAGNETIC FIELDS AT MACRO AND MICRO SCALES

Torabi, Soroosh 01 January 2017 (has links)
The non-contact nature of magnetic actuation makes it useful in a variety of microscale applications, from microfluidics and lab-on-a-chip devices to classical MEMS or even microrobotics. Ferromagnetic materials like nickel are particularly attractive, because they can be easily deposited and patterned using traditional lithography-based microscale fabrication methods. However, the response of ferromagnetic materials in a magnetic field can be difficult to predict. When placed in a magnetic field, high magnetization is induced in these ferromagnetic materials, which in turn generates force and/or torque on the ferromagnetic bodies. The magnitude and direction of these forces are highly dependent on the type of material used, the volume and aspect ratio of the ferromagnetic material, as well as the spatial distribution and magnitude of the magnetic field. It is important to understand these complex interactions in order to optimize force and torque generated, particularly given common limitations found in microfabrication, where it is often challenging to deposit large volumes of ferromagnetic material using conventional microdeposition methods, and power availability is also often limited, which in turn limits the ability to generate strong electromagnetic fields for actuation. This work represents a theoretical analysis and experimental validation in macro scale to determine best practices when designing ferromagnetic actuators for microscale applications. Specifically, the use of nickel thin film prisms actuated in spatially uniform electromagnetic fields. These constraints were chosen because uniform magnetic fields can be readily generated with a simple and inexpensive Helmholtz coil design, and the uniformity makes actuation force independent of location, minimizing the need for spatial precision in devices. Nickel can also be easily deposited using evaporation or sputtering, generally in forms of thin-films.
88

MEMS-enabled micro-electro-discharge machining (M³EDM)

Alla Chaitanya, Chakravarty Reddy 11 1900 (has links)
A MEMS-based micro-electro-discharge machining technique that is enabled by the actuation of micromachined planar electrodes defined on the surfaces of the workpiece is developed that eliminates the need of numerical control machines. First, the planar electrodes actuated by hydrodynamic force is developed. The electrode structures are defined by patterning l8-µm-thick copper foil laminated on the stainless steel workpiece through an intermediate photoresist layer and released by sacrificial etching of the resist layer. The planer electrodes are constructed to be single layer structures without particular features underneath. All the patterning and sacrificial etching steps are performed using dry-film photoresists towards achieving high scalability of the machining technique to large-area applications. A DC voltage of 80-140 V is applied between the electrode and the workpiece through a resistance-capacitance circuit that controls the pulse energy and timing of spark discharges. The parasitic capacitance of the electrode structure is used to form a resistance capacitance circuit for the generation of pulsed spark discharge between the electrode and the workpiece. The suspended electrodes are actuated towards the workpiece using the downflow of dielectric machining fluid, initiating and sustaining the machining process. Micromachining of stainless steel is experimentally demonstrated with the machining voltage of 90V and continuous flow of the fluid at the velocity of 3.4-3.9 m/s, providing removal depth of 20 µm. The experimental results of the electrode actuation match well with the theoretical estimations. Second, the planar electrodes are electrostatically actuated towards workpiece for machining. In addition to the single-layer, this effort uses double-layer structures defined on the bottom surface of the electrode to create custom designed patterns on the workpiece material. The suspended electrode is electrostatically actuated towards the wafer based on the pull-in, resulting in a breakdown, or spark discharge. This instantly lowers the gap voltage, releasing the electrode, and the gap value recovers as the capacitor is charged up through the resistor. Sequential pulses are produced through the self-regulated discharging-charging cycle. Micromachining of the stainless-steel wafer is demonstrated using the electrodes with single-layer and double-layer structures. The experimental results of the dynamic built-capacitance and mechanical behavior of the electrode devices are also analyzed. / Applied Science, Faculty of / Electrical and Computer Engineering, Department of / Graduate
89

Experimental and numerical study of a two-stroke poppet valve engine fuelled with gasoline and ethanol

Dalla Nora, Macklini January 2016 (has links)
The restrictions imposed by CO2 emission standards in Europe and many countries have promoted the development of more efficient spark ignition engines. The reduced swept volume and number of cylinders of four-stroke engines has significantly improved fuel economy by means of lower pumping and friction losses. This approach, known as engine downsizing, has demonstrated its potential of reducing fuel consumption on its own as well as applied to hybrid vehicles where a low weight engine is desired. However, aggressive engine downsizing is currently constrained by thermal and mechanical stresses and knocking combustion. In order to overcome these limitations, the present work evaluates the application of a conventional poppet valve direct injection engine into the two-stroke cycle. Two-stroke engines have the ability to produce higher power with reduced swept volume and less weight than four-stroke engines thanks to the doubled firing frequency. These advantages, although, are sometimes offset by poorer emissions resulted from fuel short-circuiting; lower thermal efficiency resulted from short expansion process; and reduced engine durability due to lubrication issues. Therefore, in this research the four-stroke engine architecture was employed so these shortcomings could be addressed by the use of direct fuel injection, variable valve actuation and a wet crankcase, respectively. The burnt gases were scavenged during a long valve overlap by means of boosted air supplied by an external compressor. An electrohydraulic fully-variable valve train enabled the optimisation of the gas exchange process in a variety of engine operating conditions. The air-fuel mixture formation was evaluated through computational fluid dynamic simulations and correlated to experimental tests. In addition, the engine operation with ethanol was assessed in a wide range of engine loads and speeds. Finally, the engine performance, combustion process, air-fuel mixing and gas exchange results were presented, discussed and contextualised with current four-stroke engines. Keywords: Two-stroke poppet valve engine; gasoline and ethanol direct injection; engine downsizing; supercharged two-stroke cycle.
90

Supporting Versatility in Tangible User Interfaces Using Collections of Small Actuated Objects / Interfaces tangibles polyvalentes à base de collections d'objets mobiles de petite taille

Le Goc, Mathieu 15 December 2016 (has links)
Dans ce manuscrit, je présente mes travaux visant à rendre les interfaces tangibles plus polyvalentes et plus physiques afin de réduire l’espace entre le réel et le virtuel. Pour ce faire, j'étudie et conçois des dispositifs technologiques permettant d’interagir avec le monde numérique exploitant au mieux le potentiel de nos mains. Je commence par examiner l’état de l’art et souligne le besoin d’approfondissement dans cette direction. J’y observe la spécificité des systèmes existants, limitant leur utilisation et diffusion, de même que l’utilisation récurrente d’écrans et autres dispositifs de projections comme moyen de représentation du monde numérique. Tirant les leçons de la recherche existante, je choisis d'orienter mes travaux autour de dispositifs physiques constitués uniquement de collections d’objets génériques et interactifs. Mon but est d’apporter plus de polyvalence aux interfaces purement tangibles. J’articule pour cela ma recherche en quatre temps. Je mène tout d’abord une étude comparant les interfaces tangibles et tactiles, dans le but d’évaluer de potentiels bénéfices de l’utilisation d’objets physiques. J’étudie conjointement l’influence de l’épaisseur des objets sur la manipulation. Les résultats suggèrent tout d’abord de modérer les conclusions de nombre d’études existantes, quant aux avantages de la tangibilité en terme de performances. Ces résultats confirment toutefois l’amélioration de l’agrément lors de l’utilisation de dispositifs physiques, expliquée par une plus grande variété ainsi qu’une plus grande fiabilité des manipulations réalisées. Je présente dans un deuxième temps SmartTokens, un dispositif à base de petits objets capable de détecter et reconnaître les manipulations auxquelles ils sont sujets. J’illustre les SmartTokens dans un scénario de gestion de notifications et de tâches personnelles. Je poursuis en introduisant les Interfaces en essaim, une sous-catégorie des interfaces tangibles, constituée de collections de nombreux robots autonomes et interactifs. Pour les illustrer, je présente les Zooids, une plateforme ouverte pour développer des Interfaces en essaim. Je démontre le potentiel quant à leur polyvalence avec un assortiment d’applications, et clarifie les règles de conception des Interfaces en essaim. Je définis les physicalisations de données composites, et les implémentent en utilisant les Zooids. Je termine en ouvrant perspectives et futures directions, et en tirant les conclusions des travaux réalisés au cours de cette thèse. / In this dissertation, I present my work aiming at making tangible user interfaces more versatile with a higher degree of physicality, in order to bridge the gap between digital and physical worlds. To this end, I study and design systems which support interaction with digital information while better leveraging human hand capabilities. I start with an examination of the current related work, and highlight the need for further research towards more versatility with a higher degree of physicality. I argue that the specificity of existing systems tends to impair their usability and diffusion and induce a dependence on screens and other projections as media to represent the digital world. Building on lessons learned from previous work, I choose to focus my work on physical systems made of collections of generic and interactive objects. I articulate my research in four steps. Firstly, I present a study that compares tangible and multitouch interfaces to help assess potential benefits of physical objects. At the same time, I investigate the influence of object thickness on how users manipulate objects. Results suggest that conclusions from numerous previous studies need to be tempered, in particular regarding the advantages of physicality in terms of performance. These results however confirm that physicality improves user experience, due to the higher diversity of possible manipulations. As a second step, I present SmartTokens, a system based on small objects capable of detecting and recognizing user manipulations. I illustrate SmartTokens in a notification and personal task management scenario. In a third step, I introduce Swarm User Interfaces as a subclass of tangible user interfaces that are composed of collections of many interactive autonomous robots. To illustrate them, I present Zooids, an open-source open-hardware platform for developing tabletop Swarm User Interfaces. I demonstrate their potential and versatility through a set of application scenarios. I then describe their implementation, and clarify design considerations for Swarm User Interfaces. As a fourth step, I define composite data physicalizations and implement them using Zooids. I finally draw conclusions from the presented work, and open perspectives and directions for future work.

Page generated in 0.1445 seconds