Spelling suggestions: "subject:"adhoc betworks"" "subject:"adhoc conetworks""
121 |
An Approach to Defend Against Black hole Attacks in Ad Hoc Networks: Node Clustering AODV Protocol (CAODV)Alnaghes, Mnar Saeed 09 October 2015 (has links)
The flexibility of Mobile Ad hoc networks (MANET) and its characteristics introduce new security risks. One possible attack is the Black Hole attack which received recent attention. In the Black Hole attack, a malicious node uses the routing protocol to declare itself as having the shortest path to the node whose packets it wants to intercept. It is needed to understand this risk with a view to extract preventive and corrective protections against it. We introduce an approach that could stop this attack from happening in such a network by using an algorithm which controls the communications between nodes and let each node becomes identified and authorized in a group of nodes. In this algorithm, stable nodes, which called leaders, are responsible for routing and forwarding packets from source to destination nodes. This research reviews the black hole attack, and, explains the algorithm that helps throughput to be increased as a consequence. / Graduate / manar.alnaghes@hotmail.com
|
122 |
Autoregression Models for Trust Management in Wireless Ad Hoc NetworksLi, Zhi January 2011 (has links)
In this thesis, we propose a novel trust management scheme for improving routing reliability in wireless ad hoc networks. It is grounded on two classic autoregression models, namely Autoregressive (AR) model and Autoregressive with exogenous inputs (ARX) model. According to this scheme, a node periodically measures the packet forwarding ratio of its every neighbor as the trust observation about that neighbor.
These measurements constitute a time series of data. The node has such a time series for each neighbor. By applying an autoregression model to these time series, it predicts the neighbors future packet forwarding ratios as their trust estimates, which in turn facilitate it to make intelligent routing decisions. With an AR model being applied, the
node only uses its own observations for prediction; with an ARX model, it will also take into account recommendations from other neighbors. We evaluate the performance of
the scheme when an AR, ARX or Bayesian model is used. Simulation results indicate that the ARX model is the best choice in terms of accuracy.
|
123 |
Mobility-based Candidate Selection and Coordination in Opportunistic Routing for Mobile Ad-Hoc NetworksTahooni, Mohammad January 2014 (has links)
Opportunistic Routing (OR) is an effective and enhanced routing scheme for wireless multihop environment. OR is an approach that selects a certain number of best forwarders (candidates) at each hop by taking the advantage of the broadcast nature of the wireless medium to reach the destination. When a set of candidates receive the packet, they coordinate with each other to figure out which one has to forward the packet toward the destination. Most of the research in this area has been done in mesh networks where nodes do not have mobility.
In this survey, we propose a new OR protocol for mobile ad hoc scenarios called as Enhanced Mobility-based Opportunistic Routing (EMOR) protocol. To deal with the node mobility, we have proposed a new metric which considers the following: geographical position of the candidates; the link delivery probability to reach them; the number of neighboring nodes of candidates; and the predicted position of nodes using the motion vector of the nodes. We have compared EMOR with five other well-known routing protocols in terms of delivery ratio, end-to-end delay, and expected number of transmissions from source to the destination. Our simulation results show that proposed protocol improves delivery ratio and number of expected transmission in terms of different type of mobility models.
|
124 |
An Efficient Approach to Coding-Aware RoutingSingh, Harveer January 2016 (has links)
Network coding is an emerging technology that intelligently exploits the store/forward nature of routers to increase the efficiency of the network. Though the concept works in theory, the segregation of coding and routing decisions makes them inapplicable in almost any practical environment. Coding-aware routing takes the network coding a step further to lessen its disadvantages by allowing interlayer communication while making routing decisions. However, most of the existing work exploits coding benefits only for fixed wireless networks, making them dependent on the types of network medium, topology and mobility and thus inapplicable for wired and mobile Ad Hoc networks. The aim of this thesis is to present a generalized algorithm that can detect any possible coding opportunity in a network of any medium, topology and mobility while making routing decisions. We have tested and evaluated our algorithm in six different network topology settings i.e. small wired, big wired, small Ad Hoc network with regular trajectories, big Ad Hoc network with regular trajectories, small Ad Hoc with random trajectories and big Ad Hoc with random trajectories. Improved performance in network throughput, mean queue size and mean end-to-end delay confirms the validity of our algorithm.
|
125 |
Relay Selection for Heterogeneous Transmission Powers in Connected VehiclesAlotaibi, Maryam January 2017 (has links)
It is widely believed that the advances of Vehicle-to-Vehicle (V2V) communications will help to remodel the prospect of road transportation systems. By virtue of V2V communications, information generated by the vehicle control system, on-board sensors or passengers can be effectively disseminated among vehicles in proximity, or to vehicles in multiple hops away in a vehicular ad-hoc network (VANET). Without assistance from any built infrastructure, a variety of active road safety applications (e.g., Vehicle-Based Road Condition Warning, Cooperative Collision Warning, Approaching Emergency Vehicle Warning) and traffic efficiency management applications (e.g., Wrong Way Driver Warning) are enabled by inter-vehicle wireless links. The purpose of connecting vehicle technologies is to improve road safety, awareness, and transportation systems efficiency.
The Wireless Access for Vehicular Environments (WAVE) technology/Dedicated Short-Range Communications (DSRC) is the main enabling wireless technology for both V2V and vehicle-to-Infrastructure (V2I) communications. From USDOT and stakeholders detailed analysis, it is resolved that WAVE is the only viable option for critical safety and other low latency mobility and environmental applications. WAVE technology has reached to a mature stage and a basic V2V system is expected to be deployed in the next few years. In the late part of 2015, USDOT announce that WAVE is sufficiently robust to proceed with the preparation for deployment of connected vehicle environments. The USDOT has created a roadmap with preliminary plans to guide industries and public agencies implementation efforts. However, there are persisting major concerns regarding the V2V initiative needing more analysis and testing. One of the concerns is the channel congestion. Channel congestion may impact WAVE effectiveness, which may in turn impact the effectiveness of supported safety applications. Suggested solutions to mitigate congestion are focused on supporting adaptive control of the message transmission power. The Institute of Electrical and Electronics Engineers (IEEE), and European Telecommunications Standards Institute (ETSI) have included transmit power component per packet to be used for channel congestion control mechanism. The adjustment of transmission powers has created an environment of vehicles with different transmission powers. Such environment will affect the performance of the proposed protocols to disseminate warning messages. It may also affect the performance of periodic beaconing that is required by most of the safety applications. Thus far, several protocols have been proposed to help identify appropriate relay vehicles. However, such approaches neglect the fact that vehicle transmission ranges are typically heterogeneous due to different transmission power values or dynamic adjustment of power to alleviate congestion. The proper selection of relay nodes governs high delivery ratio, acceptable overall end-to-end delay and efficient bandwidth usage. In this work, area-based relay selection protocols that work in heterogeneous transmission powers are introduced. Mathematical functions are developed for a timer and decision probability to be used by each vehicle receiving the message. The values of the two functions allow the vehicle to determine if it is the next to act as relay node or not. Geometric taxonomy for all possible overlap patterns in wireless environment is constructed with the related math calculations. Moreover, an adaptive expiry time for neighbours-table entries that harmonizes with dynamic beacon scheduling is proposed.
|
126 |
DRAP: A Decentralized Public Resourced Cloudlet for Ad-Hoc NetworksAgarwal, Radhika January 2014 (has links)
Handheld devices are becoming increasingly common, and they have varied range of resources. Mobile Cloud Computing (MCC) allows resource constrained devices to offload computation and use storage capacities of more resourceful surrogate machines. This enables creation of new and interesting applications for all devices.
We propose a scheme that constructs a high-performance de-centralized system by a group of volunteer mobile devices which come together to form a resourceful unit (cloudlet). The idea is to design a model to operate as a public-resource between mobile devices in close geographical proximity. This cloudlet can provide larger storage capability and can be used as a computational resource by other devices in the network. The system needs to watch the movement of the participating nodes and restructure the topology if some nodes that are providing support to the cloudlet fail or move out of the network. In this work, we discuss the need of the system, our goals and design issues in building a scalable and reconfigurable system.
We achieve this by leveraging the concept of virtual dominating set to create an overlay in the broads of the network and distribute the responsibilities in hosting a cloudlet server. We propose an architecture for such a system and develop algorithms that are requited for its operation. We map the resources available in the network by first scoring each device individually, and then gathering these scores to determine suitable candidate cloudlet nodes.
We have simulated cloudlet functionalities for several scenarios and show that our approach is viable alternative for many applications such as sharing GPS, crowd sourcing, natural language processing, etc.
|
127 |
A Quality Guaranteed Video Dissemination Protocol over Urban Vehicular Ad Hoc NetworksLi, Yang January 2014 (has links)
Video dissemination over Vehicular Ad Hoc Networks (VANETs) is an attractive technology which supports many novel applications. Hence, the merit of this thesis has twofold. Firstly, we evaluate and compare three routing techniques and two error resilience techniques. We select a sender-based routing technique called SUV and compare it with the other two selected receiver-based routing techniques named REACT-DIS and CDS. The results, more specifically, show that the receiver-based solutions outperform the sender-based solution. In addition, only CDS method fulfils the general quality requirements as it is the best that reduces redundancy packets and covers the whole topology. The results also indicate that the video coding scheme, Interleaving, can fix the multiple consecutive packet losses and guarantee reliable video qualities over VANETs. Network Coding, however, fails to provide satisfactory video quality for urban scenarios. This study next combines the selected receiver based routing techniques and the two error resilience techniques. We find the best combination is Interleaving over CDS. Secondly, we design a quality guaranteed video dissemination protocol for urban VANETs scenarios. Based on our comparison result, our protocol selects the CDS and Interleaving as the routing and error resilient techniques. To fix the single packet loses caused by the topology’s intermittent disconnection and collisions, we propose a store-carry-broadcast scheme for the nodes to re-transmit the local buffer saved packets. The results, when compared to the selected techniques and combinations, show that our proposed protocol is the most efficient one in terms of packet delivery, delay, overhead and video quality.
|
128 |
Achieving quality of service in mobile ad hoc networks containing packet forwarding attackersMcnerney, Peter Joseph John January 2013 (has links)
In future, Mobile Ad Hoc Networks (MANETs) may provide access to services in the Internet. MANETs should therefore support diverse applications and data types. This introduces a need for quality of service (QoS), a process of discriminating different data types to provide them with an appropriate level of service. However, QoS can be affected by nodes performing packet forwarding attacks. A critical analysis of the related literature shows that research into QoS and security has typically proceeded independently. However, QoS and security should be considered together as attacks may adversely affect QoS. A simulation study demonstrates this by investigating two single-path packet forwarding approaches under a range of conditions. The study shows that using single-path packet forwarding in the presence of attackers is generally insufficient to support QoS.Based on this background research, a novel 2-Dimensional Adaptation ARChitecture (2-DAARC) and a Priority-based Multi-path Type Selection (PMTS) algorithm are proposed. 2-DAARC integrates two modes of adaptation. The single-path adaptation (SPA) mode uses adaptive bandwidth reservations over a single path for QoS in the presence of node mobility. The multi-path adaptation (MPA) mode uses duplicated data packet transmissions over multiple paths for QoS in the presence of packet forwarding attackers. Adaptation occurs within and between modes to optimize priority packet forwarding in the dynamic MANET environment. The MPA mode uses the PMTS algorithm to select a secondary path which is maximally-disjoint with the primary path. This aims to select a path which may enhance reliability whilst keeping the costs of path selection low. Simulating 2-DAARC shows that under light loads it achieves better QoS than related work, but with a higher control packet overhead. Simulating PMTS shows that under light loads it achieves packet deliveries which are at best as good as a related approach, with lower end-to-end delays and control packet overhead. A novel Congestion and ATtack (CAT) detection mechanism is proposed to improve the performance of 2-DAARC in heavily loaded networks. CAT detection differentiates the causes of packet loss so that adaptation can be better tailored to the network conditions. Without CAT detection, 2-DAARC uses the MPA mode in congested conditions, and this worsens QoS. Simulating 2-DAARC with CAT detection shows that it generally achieves packet deliveries which are greater than or similar to, and end-to-end delays which are less than or similar to related work, and it does so with a lower control packet overhead.
|
129 |
A Novel Approach for MAC and PHY Performance Analysis in Relay Networks in Presence of Interference and Shadow FadingAlkandari, Bader A. 01 September 2019 (has links)
Relays in communication networks is a well-researched topic. Historically, relays were used in analog radio and television to extend the coverage. Using relays in wireless data networking applications is a more recent problem. In the early 2000s, relays were introduced for Micro-cellular and Wi-Fi deployments. Recently it has been considered for sensor networks and Vehicular Ad-hoc Networks (VANETs) applications.
In this dissertation we present a novel approach to determine the optimal bounds for the Medium Access Control (MAC) throughput at the target receiver in a multi-hop multirate wireless data network. For a given relationship between the throughput and the distance, and a given distance between the access point and the target receiver, there is a minimum number of nodes that provides the maximum throughput to the target receiver. It is always desirable to optimize the deployment from various aspects. These aspects are application dependent and they range from energy conservation in sensor networks to throughput and coverage maximization in data networks.
We apply this novel approach to vehicular ad-hoc network (VANET) scenarios. Using multi-hop relays, we show how to determine the optimum throughput for communciation between two vehicles. The optimal number of relays is chosen to maximize the throughput for point-to-point communication between a source and a destination as well as broadcast among all vehicles in the coverage area of the source.
Additionally, in the physical layer, performance issues arise from the effects of interference and fading. The physical layer performance will in turn impact medium access control performance, effectively reducing the network throughput. We evaluate the ii performance of dense small cells for wireless local area networks (WLAN) and femto cells for data applications under the effects of interference and fading. We assume the network is fully saturated. We use the throughput-distance relationship to take into consideration the effects of interference, fading as well as the medium access control overheads. Using this model, we show that under certain conditions, the medium access control throughput for WLANs can outperform that of femto cells.
|
130 |
TCP Performance in Wireless Mobile Multi-hop Ad Hoc NetworksWestin, Ola January 2003 (has links)
There are many issues that limit the performance of wireless mobile multi-hop ad hoc networks (MANETs). One of them is that TCP is not well adapted to networks where routes can change or disappear often. In this paper the behaviour of a standard TCP implementation is studied in situations typical for MANETs and compared to the behaviour of a partial implementation of a ATCP, a TCP modification that is intended to increase performance in MANETs. Simulations with simple scenarios show that TCP easily creates a full network load which causes send failures and decreased throughput performance. In some cases the partial ATCP implementation increases throughput but more often it causes an increased amount of duplicate retransmissions. In these scenarios it is unlikely that even a complete ATCP implementation would increase throughput performance. A few modifications to ATCP and TCP are analysed. Especially a limit of the congestion window size shows a large throughput increase. The results are inconclusive, the simulations are too simple to show if the results are applicable in more complex scenarios. It is not clear if ATCP actually is useful in a MANET. / Många faktorer begränsar prestandan i trådlösa mobila multi-hopp ad hoc-nätverk (MANET:er). En av dem är att TCP inte är anpassat till nätverk där rutter ofta kan förändras eller försvinna. I den här rapporten studeras hur en vanlig TCP-implementation uppför sig i typiska MANET-situationer. Detta beteende jämförs mot en partiell implementation av ATCP, en TCPmodifiering som är tänkt att öka prestanda i MANET:er. Simuleringar med enkla scenarier visar att TCP lätt genererar en full nätverkslast vilket orsakar misslyckade sändningar och en minskad genomströmningsprestanda. I vissa fall ökar den partiella ATCP-implementationen genomströmningen, men oftare ger den en ökad mängd onödiga omsändningar. I dessa scenarier är det inte troligt att ens en komplett ATCP-implementation skulle öka genomströmningsprestanda. Några mindre förändringar av ATCP och TCP analyseras. Särskilt ger en begränsning av stockningsfönstret en stor ökning av genomströmningen. Resultaten är ofullständiga. Simuleringarna är för enkla för att kunna visa om om resultaten är tillämpliga i mer komplexa scenarier. Det är inte klarlagt ifall ATCP verkligen är användbart i ett MANET.
|
Page generated in 0.0442 seconds