• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 306
  • 34
  • 25
  • 21
  • 12
  • 12
  • 10
  • 6
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 523
  • 523
  • 523
  • 241
  • 200
  • 147
  • 145
  • 116
  • 110
  • 104
  • 83
  • 70
  • 55
  • 53
  • 50
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Caching-based Multipath Routing in Mobile Ad Hoc Networks

Joshi, Vineet 21 April 2009 (has links)
No description available.
142

Resource Management in Ad Hoc Networks

Gupta, Nishant 11 October 2001 (has links)
No description available.
143

Performance of Disparate-Bandwidth DS-SS Systems in Spectral Overlay Ad Hoc Networks

Alhashim, Najeeb S. 05 August 2009 (has links)
No description available.
144

Design and Implementation of the FINS Framework: Flexible Internetwork Stack

Reed, Jonathan Michael 29 June 2014 (has links)
This thesis describes the Flexible Internetwork Stack (FINS) Framework, an open-source tool to facilitate experimental research in wireless networks on multiple platforms. The FINS Framework uses a module-based architecture that allows cross-layer behavior and runtime reconfiguration of the protocol stack. Version 1.0 of the framework makes use of existing physical and data link layer functionality, while enabling modifications to the stack at the network layer and above, or even the implementation of a clean-slate, non-layered protocol architecture. Protocols, stubs for communicating with intact layers, and management and supervisory functions are implemented as FINS Framework modules, interconnected by a central switch. This thesis describes the FINS Framework architecture, presents an initial assessment along with experiments on Android and Ubuntu enabled by the tool, and documents an intuitive mechanism for transparently intercepting socket calls that maintains efficiency and flexibility. / Master of Science
145

Multipath "Fresnel Zone" Routing for Wireless Ad Hoc Networks

Liang, Yibin 26 March 2004 (has links)
Prior research in routing for wireless ad hoc networks has shown that multipath routing can enhance data delivery reliability and provide load balancing. Nevertheless, only a few multipath routing algorithms have been proposed and their interaction with transport layer protocols has not been thoroughly addressed in the literature. In this work, we propose the multipath “Fresnel zone” routing (FZR) algorithm for wireless ad hoc networks. FZR constructs multiple parallel paths from source to destination based on the concept of “Fresnel zones” in a wireless network. The zone construction method assigns intermediate routers into different “Fresnel zones” according to their capacity and efficiency in forwarding traffic. The central idea in FZR is to disperse traffic to different zones according to network load and congestion conditions, thus achieving better throughput and avoiding congestion at intermediate routers. FZR differs from most existing multipath routing approaches in that both source and intermediate nodes use multiple forwarding paths. FZR also adopts a combination of proactive and on-demand (reactive) approaches to reduce control overhead and latency for packet delivery. Simulation experiments have shown that FZR outperforms unipath distance vector routing, multipath distance vector (MDV) routing, and split multipath routing (SMR) algorithms in quasistatic wireless ad hoc networks. In our simulations, FZR achieves up to 100 percent higher average throughput using the User Datagram Protocol (UDP) and 50 percent higher average throughput using the Transmission Control Protocol (TCP). FZR can also provide better load balancing among different paths, improve network resource utilization, and enable fairer resource allocation among different data transmission sessions. Future work is needed to evaluate FZR in mobile scenarios. / Master of Science
146

Mobility Pattern Aware Routing in Mobile Ad Hoc Networks

Samal, Savyasachi 11 September 2003 (has links)
A mobile ad hoc network is a collection of wireless nodes, all of which may be mobile, that dynamically create a wireless network amongst them without using any infrastructure. Ad hoc wireless networks come into being solely by peer-to-peer interactions among their constituent mobile nodes, and it is only such interactions that are used to provide the necessary control and administrative functions supporting such networks. Mobile hosts are no longer just end systems; each node must be able to function as a router as well to relay packets generated by other nodes. As the nodes move in and out of range with respect to other nodes, including those that are operating as routers, the resulting topology changes must somehow be communicated to all other nodes as appropriate. In accommodating the communication needs of the user applications, the limited bandwidth of wireless channels and their generally hostile transmission characteristics impose additional constraints on how much administrative and control information may be exchanged, and how often. Ensuring effective routing is one of the greatest challenges for ad hoc networking. As a practice, ad hoc routing protocols make routing decisions based on individual node mobility even for applications such as disaster recovery, battlefield combat, conference room interactions, and collaborative computing etc. that are shown to follow a pattern. In this thesis we propose an algorithm that performs routing based on underlying mobility patterns. A mobility pattern aware routing algorithm is shown to have several distinct advantages such as: a more precise view of the entire network topology as the nodes move; a more precise view of the location of the individual nodes; ability to predict with reasonably accuracy the future locations of nodes; ability to switch over to an alternate route before a link is disrupted due to node movements. / Master of Science
147

Unified distribution of pseudonyms in hybrid ephemeral vehicular networks

Benin, Joseph Thomas 08 November 2012 (has links)
This research devises a unified method for the distribution of pseudonyms in hybrid ephemeral vehicular networks (VNs), which are often referred to as vehicular ad hoc networks (VANETs), for the purposes of refill, intra-regional, and inter-regional movement. This work addresses a significant impediment to the use of pseudonyms, which has been almost universally accepted (and is on the verge of being standardized by the Institute for Electrical and Electronic Engineers (IEEE) and the Society for Automotive Engineers (SAE) as the best means to balance attribution and privacy to maximize the value of infrastructure deployment and citizen acceptability (i.e. use). The results include a pseudonym distribution protocol that maximizes ease of use while not compromising the security or privacy pseudonyms afford. These results contribute to the solution, in a scalable, adaptive, and bandwidth efficient manner, one of the remaining impediments to the adoption of VANETs. The new method shows improved performance compared to a baseline pseudonym distribution method that does not take these factors into consideration.
148

Performance Evaluation Of Routing Protocols In Wireless Ad Hoc Networks With Service Differentiation

Yilmaz, Semra 01 January 2003 (has links) (PDF)
An ad hoc network is a collection of wireless mobile nodes dynamically forming a temporary network without the use of any fixed network infrastructure or centralized administration. Due to the limitations in the wireless environment, it may be necessary for one mobile host to enlist the aid of other hosts in forwarding a packet to its destination. In order to enable communication within the network, a routing protocol is needed to discover routes between nodes. The primary goal of ad hoc network routing protocols is to establish routes between node pairs so that messages may be delivered reliably and in a timely manner. The basic access method in IEEE 802.11 ad hoc networks is the Distributed Coordination Function (DCF), which provides a fair medium access. Enhanced Distributed Coordination Function (EDCF) has been developed to provide service differentiation among different traffic flows. In this thesis, we investigate the performance of the EDCF with routing protocols / Direct Sequenced Distance Vector (DSDV) and Dynamic Source Routing (DSR) by simulations.
149

Online ad hoc distributed traffic simulation with optimistic execution

Suh, Wonho 03 July 2012 (has links)
As roadside and in-vehicle sensors are deployed under the Connected Vehicle Research program (formerly known as Vehicle Infrastructure Integration initiative and Intellidrive), an increasing variety of traffic data is becoming available in real time. This real time traffic data is shared among vehicles and between vehicles and traffic management centers through wireless communication. This course of events creates an opportunity for mobile computing and online traffic simulations. However, online traffic simulations require faster than real time running speed with high simulation resolution, since the purpose of the simulations is to provide immediate future traffic forecast based on real time traffic data. However, simulating at high resolution is often too computationally intensive to process a large scale network on a single processor in real time. To mitigate this limitation an online ad hoc distributed simulation with optimistic execution is proposed in this study. The objective of this study is to develop an online traffic simulation system based on an ad hoc distributed simulation with optimistic execution. In this system, data collection, processing, and simulations are performed in a distributed fashion. Each individual simulator models the current traffic conditions of its local vicinity focusing only on its area of interest, without modeling other less relevant areas. Collectively, a central server coordinates the overall simulations with an optimistic execution technique and provides a predictive model of traffic conditions in large areas by combining simulations geographically spread over large areas. This distributed approach increases computing capacity of the entire system and speed of execution. The proposed model manages the distributed network, synchronizes the predictions among simulators, and resolves simulation output conflicts. Proper feedback allows each simulator to have accurate input data and eventually produce predictions close to reality. Such a system could provide both more up-to-date and robust predictions than that offered by centralized simulations within a single transportation management center. As these systems evolve, the online traffic predictions can be used in surface transportation management and travelers will benefit from more accurate and reliable traffic forecast.
150

Granting privacy and authentication in mobile ad hoc networks.

Balmahoon, Reevana. 22 May 2013 (has links)
The topic of the research is granting privacy and authentication in Mobile Ad Hoc Networks (MANETs) that are under the authority of a certificate authority (CA) that is often not available. Privacy is implemented in the form of an anonymous identity or pseudonym, and ideally has no link to the real identity. Authentication and privacy are conflicting tenets of security as the former ensures a user's identity is always known and certified and the latter hides a user's identity. The goal was to determine if it is possible for a node to produce pseudonyms for itself that would carry the authority of the CA while being traceable by the CA, and would be completely anonymous. The first part of the dissertation places Vehicular Ad Hoc Networks (VANETs) into context, as this is the application of MANETs considered. This is followed by a detailed survey and analysis of the privacy aspects of VANETs. Thereafter, the solution is proposed, documented and analysed. Lastly, the dissertation is concluded and the contributions made are listed. The solution implements a novel approach for making proxies readily available to vehicles, and does indeed incorporate privacy and authentication in VANETs such that the pseudonyms produced are always authentic and traceable. / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2012.

Page generated in 0.1389 seconds