• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Vehicular Group Membership Resilient to Malicious Attacks

Fischer, Benjamin January 2019 (has links)
There is a range of tools and techniques in the realm of information security that can be used to enhance the security of a distributed network protocol and some of them introduce new problems. A security analysis of the distributed network protocol SLMP is made and three vulnerabilities are identified; messages can be intercepted and tampered with, nodes can fake id, and leader nodes can do a lot of harm if they are malicious. Three versions of SLMP that aims to remedy these vulnerabilities are implemented and the results show that while they remedy the vulnerabilities some of them introduce new problems.
2

Unified distribution of pseudonyms in hybrid ephemeral vehicular networks

Benin, Joseph Thomas 08 November 2012 (has links)
This research devises a unified method for the distribution of pseudonyms in hybrid ephemeral vehicular networks (VNs), which are often referred to as vehicular ad hoc networks (VANETs), for the purposes of refill, intra-regional, and inter-regional movement. This work addresses a significant impediment to the use of pseudonyms, which has been almost universally accepted (and is on the verge of being standardized by the Institute for Electrical and Electronic Engineers (IEEE) and the Society for Automotive Engineers (SAE) as the best means to balance attribution and privacy to maximize the value of infrastructure deployment and citizen acceptability (i.e. use). The results include a pseudonym distribution protocol that maximizes ease of use while not compromising the security or privacy pseudonyms afford. These results contribute to the solution, in a scalable, adaptive, and bandwidth efficient manner, one of the remaining impediments to the adoption of VANETs. The new method shows improved performance compared to a baseline pseudonym distribution method that does not take these factors into consideration.
3

A Cloud-native Vehicular Public Key Infrastructure : Towards a Highly-available and Dynamically- scalable VPKIaaS / En cloud-native public key infrastruktur för fordon : För ett VPKI med hög tillgänglihhet och dynamisk skalbarhet

Noroozi, Hamid January 2021 (has links)
Efforts towards standardization of Vehicular Communication Systems (VCSs) have been conclusive on the use of Vehicular Public-Key Infrastructure (VPKI) for the establishment of trust among network participants. Employing VPKI in Vehicular Communication (VC) guarantees the integrity and authenticity of Cooperative Awareness Messages (CAMs) and Decentralized Environmental Notification Messages (DENMs). It also offers a level of privacy for vehicles as VPKI provides them with a set of non-linkable short-lived certificates, called pseudonyms, which are used to sign outgoing messages by vehicles while they communicate with other vehicles referred to as Vehicle-to-Vehicle (V2V) or Roadside Units (RSUs) referred to as Vehicle-to-Infrastructure (V2I). Each vehicle uses a pseudonym for its lifetime and by switching to a not- previously- used pseudonym, it continues to communicate without risking its privacy. There have been two approaches suggested by the literature on how to provide vehicles with pseudonyms. One is the so-called pre-loading mode, suggesting to pre-load vehicles with all pseudonyms they need, which increases the cost of revocation in case they are compromised. The other one is the on-demand mode, suggesting a real-time offering of pseudonyms by VPKI at vehicles request e.g., on starting each trip. Choosing the on-demand approach imposes a considerable burden of availability and resilience on VPKI services. In this work, we are confronting the problems regarding a large-scale deployment of an on-demand VPKI that is resilient, highly available, and dynamically scalable. In order to achieve that, by leveraging state-of-the-art tools and design paradigms, we have enhanced a VPKI system to ensure that it is capable of meeting enterprise-grade Service Level Agreement (SLA) in terms of availability, and it can also be cost-efficient as services can dynamically scale-out in the presence of high load, or possibly scale-in when facing less demand. That has been made possible by re-architecting and refactoring an existing VPKI into a cloud-native solution deployed as microservices. Towards having a reliable architecture based on distributed microservices, one of the key challenges to deal with is Sybil-based misbehavior. By exploiting Sybil-based attacks in VPKI, malicious vehicles can gain influential advantage in the system, e.g., one can affect the traffic to serve its own will. Therefore, preventing the occurrence of Sybil attacks is paramount. On the other hand, traditional approaches to stop them, often come with a performance penalty as they verify requests against a relational database which is a bottleneck of the operations. We propose a solution to address Sybil-based attacks, utilizing Redis, an in-memory data store, without compromising the system efficiency and performance considerably. Running our VPKI services on Google Cloud Platform (GCP) shows that a large-scale deployment of VPKI as a Service (VPKIaaS) can be done efficiently. Conducting various stress tests against the services indicates that the VPKIaaS is capable of serving real world traffic. We have tested VPKIaaS under synthetically generated normal traffic flow and flash crowd scenarios. It has been shown that VPKIaaS managed to issue 100 pseudonyms per request, submitted by 1000 vehicles where vehicles kept asking for a new set of pseudonyms every 1 to 5 seconds. Each vehicle has been served in less than 77 milliseconds. We also demonstrate that, under a flash crowd situation, with 50000 vehicles, VPKIaaS dynamically scales out, and takes ≈192 milliseconds to serve 100 pseudonyms per request submitted by vehicles. / Ansträngningar för standardisering av Vehicular Communication Systems har varit avgörande för användandet av Vehicular Public-Key Infrastructure (VPKI) för att etablera förtroende mellan nätverksdeltagare. Användande av VPKI i Vehicular Communication (VC) garanterar integritet och autenticitet av meddelanden. Det erbjuder ett lager av säkerhet för fordon då VPKI ger dem en mängd av icke länkbara certifikat, kallade pseudonym, som används medan de kommunicerar med andra fordon, kallat Vehicle-to-Vehicle (V2V) eller Roadside Units (RSUs) kallat Vehicle-to-Infrastructure (V2I). Varje fordon använder ett pseudonym under en begränsad tid och genom att byta till ett icke tidigare använt pseudonym kan det fortsätta kommunicera utan att riskera sin integritet. I litteratur har två metoder föreslagits för hur man ska ladda fordon med pseudonym de behöver. Den ena metoden det så kallade offline-läget, som proponerar att man för-laddar fordonen med alla pseudonym som det behöver vilket ökar kostnaden för revokering i fall de blir komprometterat. Den andra metoden föreslår ett on-demand tillvägagångssätt som erbjuder pseudonym via VPKI på fordonets begäran vid början av varje färd. Valet av på begäran metoden sätter en stor börda på tillgänglighet och motståndskraft av VPKI tjänster. I det här arbetet, möter vi problem med storskaliga driftsättningar av en på begäran VPKI som är motståndskraftig, har hög tillgänglighet och dynamiskt skalbarhet i syfte att uppnå dessa attribut genom att nyttja toppmoderna verktyg och designparadigmer. Vi har förbättrat ett VPKI system för att säkerställa att det är kapabelt att möta SLA:er av företagsklass gällande tillgänglighet och att det även kan vara kostnadseffektivt eftersom tjänster dynamiskt kan skala ut vid högre last eller skala ner vid lägre last. Detta har möjliggjorts genom att arkitekta om en existerande VPKI till en cloud-native lösning driftsatt som mikrotjänster. En av nyckelutmaningarna till att ha en pålitlig arkitektur baserad på distribuerade mikrotjänster är sybil-baserad missuppförande. Genom att utnyttja Sybil baserade attacker på VPKI, kan illvilliga fordon påverka trafik att tjäna dess egna syften. Därför är det av största vikt att förhindra Sybil attacker. Å andra sidan så dras traditionella metoder att stoppa dem med prestandakostnader. Vi föreslår en lösning för att adressera Sybilbaserade attacker genom att nyttja Redis, en in-memory data-store utan att märkbart kompromissa på systemets effektivitet och prestanda. Att köra våra VPKI tjänster på Google Cloud Platform (GCP) och genomföra diverse stresstester mot dessa har visat att storskaliga driftsättningar av VPKI as a Service (VPKIaaS) kan göras effektivt samtidigt som riktigt trafik hanteras. Vi har testat VPKIaaS under syntetisk genererat normalt trafikflöde samt flow och flash mängd scenarier. Det har visat sig att VPKIaaS klarar att utfärda 100 pseudonym per förfråga utsänt av 1000 fordon (där fordonen bad om en ny uppsättning pseudonym varje 1 till 5 sekunder), och varje fordon fått svar inom 77 millisekunder. Vi demonstrerar även att under en flashcrowd situation, där antalet fordon höjs till 50000 med en kläckningsgrad på 100. VPKIaaS dynamiskt skalar ut och tar ≈192 millisekunder att betjäna 100 pseudonymer per förfrågan gjord av fordon.
4

Efficient, Scalable and Secure Vehicular Communication System : An Experimental Study

Singh, Shubhanker January 2020 (has links)
Awareness of vehicles’ surrounding conditions is important in today’s intelligent transportation system. A wide range of effort has been put in to deploy Vehicular Communication (VC) systems to make driving conditions safer and more efficient. Vehicles are aware of their surroundings with the help of authenticated safety beacons in VC systems. Since vehicles act according to the information conveyed by such beacons, verification of beacons plays an important role in becoming aware of and predicting the status of the sender vehicle. The idea of implementing secure mechanisms to deal with a high rate of incoming beacons and processing them with high efficiency becomes a very important part of the whole VC network. The goal of this work was to implement a scheme that deals with a high rate of the incoming beacon, preserve non-repudiation of the accepted messages which contains information about the current and near-future status of the sender vehicle, and at the same time keep the computation overhead as low as possible. Along with this, maintaining user privacy from a legal point of view as well as from a technical perspective by implementing privacy-enhancing technologies. These objectives were achieved by the introduction of Timed Efficient Stream Loss-Tolerant Authentication (TESLA), periodic signature verification, and cooperative verification respectively. Four different scenarios were implemented and evaluated, starting and building upon the baseline approach. Each approach addressed the problems that were aimed at this work and results show improved scalability and efficiency with the introduction of TESLA, periodic signature verification, and cooperative verification. / Medvetenheten om fordons omgivande förhållanden är viktig i dagens intelligenta transportsystem. Ett stort antal ansträngningar har lagts ned för att distribuera VC system för att göra körförhållandena säkrare och effektivare. Fordon är medvetna om sin omgivning med hjälp av autentiserade säkerhetsfyrar i VC system. Eftersom fordon agerar enligt den information som förmedlas av sådana fyrar, spelar verifiering av fyrar en viktig roll för att bli medveten om och förutsäga avsändarfordonets status. Idén att implementera säkra mekanismer för att hantera en hög frekvens av inkommande fyrar och bearbeta dem med hög effektivitet blir en mycket viktig del av hela VC nätverket. Målet med detta arbete var att implementera ett schema som behandlar en hög hastighet för det inkommande fyren, bevara icke-förkastelse av de accepterade meddelandena som innehåller information om den aktuella och närmaste framtida statusen för avsändarfordonet och samtidigt håll beräkningen så låg som möjligt. Tillsammans med detta upprätthåller användarnas integritet ur juridisk synvinkel såväl som ur ett tekniskt perspektiv genom att implementera integritetsförbättrande teknik. Dessa mål uppnåddes genom införandet av TESLA, periodisk signatur verifiering respektive samarbets verifiering. Fyra olika scenarier implementerades och utvärderades med utgångspunkt från baslinjemetoden. Varje tillvägagångssätt tog upp de problem som riktades mot detta arbete och resultaten visar förbättrad skalbarhet och effektivitet med införandet av TESLA, periodisk signatur verifiering och samarbets verifiering.

Page generated in 0.0128 seconds