• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • Tagged with
  • 14
  • 14
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of an integrated suite of methods to reduce computational effort in groundwater modeling validation and testing

Pettway, Jacqueline 01 May 2010 (has links)
A suite of tools to reduce the computational effort in groundwater modeling validation and testing has been developed. The work herein explores reduction of computational effort via smart adaptivemeshing, optimization techniques, which require fewer model calls, and the development of surrogate models. Adaptive meshing reduces the computational domain by allowing for mesh refinement in areas of interest determined dynamically by the model through error indicators instead of requiring a priori knowledge or a posteriori determination and rebuilding of the computational domain. As the areas of interest change with the physics, the refinement is removed to lower computational time by using unrefinement. The computational time for dynamic mesh adaption versus uniform refinement is orders of magnitudes smaller. Further reduction in computational time may be required especially when using parameter estimation techniques that require on the order of 2n computations, where n is the number of parameters being estimated. A demonstration of the usefulness of parameter estimation techniques is given, followed by a discussion of methods to further reduce computational time. It may also be necessary to look at reduced physics-type methods to further reduce computational time for the physics-based model. Surrogate models, such as proper orthogonal decomposition (POD), greatly reduce the computational time while maintaining the most important aspects of the physics being solved. The idea here is to run the full model, create the PODs basis, then use this basis to run parameter estimation. Once a better fit has been determined, the full model is run again to capture the full-physics results. The technique is repeated as necessary to capture the “best” parameters to numerically represent the observed behavior.
2

Simulations of interfacial dynamics of complex fluids using diffuse interface method with adaptive meshing

Zhou, Chunfeng 11 1900 (has links)
A diffuse-interface finite-element method has been applied to simulate the flow of two-component rheologically complex fluids. It treats the interfaces as having a finite thickness with a phase-field parameter varying continuously from one phase to the other. Adaptive meshing is applied to produce fine grid near the interface and coarse mesh in the bulk. It leads to accurate resolution of the interface at modest computational costs. An advantage of this method is that topological changes such as interfacial rupture and coalescence happen naturally under a short-range force resembling the van der Waals force. There is no need for manual intervention as in sharp-interface model to effect such event. Moreover, this energy-based formulation easily incorporates complex rheology as long as the free energy of the microstructures is known. The complex fluids considered in this thesis include viscoelastic fluids and nematic liquid crystals. Viscoelasticity is represented by the Oldroyd-B model, derived for a dilute polymer solution as linear elastic dumbbells suspended in a Newtonian solvent. The Leslie-Ericksen model is used for nematic liquid crystals,which features distortional elasticity and viscous anisotropy. The interfacial dynamics of such complex fluids are of both scientific and practical significance. The thesis describes seven computational studies of physically interesting problems. The numerical simulations of monodisperse drop formation in microfluidic devices have reproduced scenarios of jet breakup and drop formation observed in experiments. Parametric studies have shown dripping and jetting regimes for increasing flow rates, and elucidated the effects of flow and rheological parameters on the drop formation process and the final drop size. A simple liquid drop model is used to study the neutrophil, the most common type of white blood cell, transit in pulmonary capillaries. The cell size, viscosity and rheological properties are found to determine the transit time. A compound drop model is also employed to account for the cell nucleus. The other four cases concern drop and bubble dynamics in nematic liquid crystals, as determined by the coupling among interfacial anchoring, bulk elasticity and anisotropic viscosity. In particular, the simulations reproduce unusual bubble shapes seen in experiments, and predict self-assembly of microdroplets in nematic media.
3

Simulations of interfacial dynamics of complex fluids using diffuse interface method with adaptive meshing

Zhou, Chunfeng 11 1900 (has links)
A diffuse-interface finite-element method has been applied to simulate the flow of two-component rheologically complex fluids. It treats the interfaces as having a finite thickness with a phase-field parameter varying continuously from one phase to the other. Adaptive meshing is applied to produce fine grid near the interface and coarse mesh in the bulk. It leads to accurate resolution of the interface at modest computational costs. An advantage of this method is that topological changes such as interfacial rupture and coalescence happen naturally under a short-range force resembling the van der Waals force. There is no need for manual intervention as in sharp-interface model to effect such event. Moreover, this energy-based formulation easily incorporates complex rheology as long as the free energy of the microstructures is known. The complex fluids considered in this thesis include viscoelastic fluids and nematic liquid crystals. Viscoelasticity is represented by the Oldroyd-B model, derived for a dilute polymer solution as linear elastic dumbbells suspended in a Newtonian solvent. The Leslie-Ericksen model is used for nematic liquid crystals,which features distortional elasticity and viscous anisotropy. The interfacial dynamics of such complex fluids are of both scientific and practical significance. The thesis describes seven computational studies of physically interesting problems. The numerical simulations of monodisperse drop formation in microfluidic devices have reproduced scenarios of jet breakup and drop formation observed in experiments. Parametric studies have shown dripping and jetting regimes for increasing flow rates, and elucidated the effects of flow and rheological parameters on the drop formation process and the final drop size. A simple liquid drop model is used to study the neutrophil, the most common type of white blood cell, transit in pulmonary capillaries. The cell size, viscosity and rheological properties are found to determine the transit time. A compound drop model is also employed to account for the cell nucleus. The other four cases concern drop and bubble dynamics in nematic liquid crystals, as determined by the coupling among interfacial anchoring, bulk elasticity and anisotropic viscosity. In particular, the simulations reproduce unusual bubble shapes seen in experiments, and predict self-assembly of microdroplets in nematic media.
4

Simulations of interfacial dynamics of complex fluids using diffuse interface method with adaptive meshing

Zhou, Chunfeng 11 1900 (has links)
A diffuse-interface finite-element method has been applied to simulate the flow of two-component rheologically complex fluids. It treats the interfaces as having a finite thickness with a phase-field parameter varying continuously from one phase to the other. Adaptive meshing is applied to produce fine grid near the interface and coarse mesh in the bulk. It leads to accurate resolution of the interface at modest computational costs. An advantage of this method is that topological changes such as interfacial rupture and coalescence happen naturally under a short-range force resembling the van der Waals force. There is no need for manual intervention as in sharp-interface model to effect such event. Moreover, this energy-based formulation easily incorporates complex rheology as long as the free energy of the microstructures is known. The complex fluids considered in this thesis include viscoelastic fluids and nematic liquid crystals. Viscoelasticity is represented by the Oldroyd-B model, derived for a dilute polymer solution as linear elastic dumbbells suspended in a Newtonian solvent. The Leslie-Ericksen model is used for nematic liquid crystals,which features distortional elasticity and viscous anisotropy. The interfacial dynamics of such complex fluids are of both scientific and practical significance. The thesis describes seven computational studies of physically interesting problems. The numerical simulations of monodisperse drop formation in microfluidic devices have reproduced scenarios of jet breakup and drop formation observed in experiments. Parametric studies have shown dripping and jetting regimes for increasing flow rates, and elucidated the effects of flow and rheological parameters on the drop formation process and the final drop size. A simple liquid drop model is used to study the neutrophil, the most common type of white blood cell, transit in pulmonary capillaries. The cell size, viscosity and rheological properties are found to determine the transit time. A compound drop model is also employed to account for the cell nucleus. The other four cases concern drop and bubble dynamics in nematic liquid crystals, as determined by the coupling among interfacial anchoring, bulk elasticity and anisotropic viscosity. In particular, the simulations reproduce unusual bubble shapes seen in experiments, and predict self-assembly of microdroplets in nematic media. / Applied Science, Faculty of / Chemical and Biological Engineering, Department of / Graduate
5

Harmonic-suppression Using Adaptive Surface Meshing and Genetic Algorithms

Bin-Melha, Mohammed S., Abd-Alhameed, Raed, Zhou, Dawei, Zainal-Abdin, Z.B., See, Chan H., Elfergani, Issa T., Excell, Peter S. 22 March 2011 (has links)
Yes / A novel design strategy for microstrip harmonic-suppression antennas is presented. The computational method is based on an integral equation solver using adaptive surface meshing driven by a genetic algorithm. Two examples are illustrated, all involving design of coaxially-fed air-dielectric patch antennas implanted with shorting and folded walls. The characteristics of the antennas in terms of the impedance responses and far ¯eld radiation patterns are discussed theoretically and experimentally. The performances of all of the GA-optimised antennas were shown to be excellent and the presented examples show the capability of the proposed method in antenna design using GA. / MSCRC
6

Bearing capacity of perforated offshore foundations under combined loading

Tapper, Laith January 2013 (has links)
This thesis presents experimental work and numerical analysis that has been undertaken to assess the bearing capacity of perforated offshore foundations. Perforated foundations may be used to support subsea infrastructure, including as mudmats into which a number of perforations have been made, or as grillages which consist of a series of structurally connected strip footings. Larger gravity base foundations, such as for offshore wind turbines or oil and gas platforms, may adopt a single central perforation. The advantages of using perforated foundations can include reduced material requirements and easier offshore handling as a result of smaller weight and lower hydrodynamic forces during deployment. Limited guidance currently exists for assessing the bearing capacity of these foundation types. Bearing capacity of perforated foundations has been examined in this thesis under conditions of combined vertical, horizontal and moment loading which is typical in offshore settings. Undrained soil conditions have been considered, except for the case of grillages in which drained conditions are often most relevant. Experimental work has included centrifuge testing of ring and square annular foundations on clay, and 1g testing of grillage foundations on sand. Finite element modelling has also been undertaken to assess perforated foundation capacity. A Tresca material subroutine (UMAT) and an adaptive meshing scheme have been developed to improve the accuracy of the finite element analysis carried out. The results showed that perforated foundations can be an efficient foundation solution for accommodating combined loading. As a ratio of their vertical load capacity, perforated foundations may be able to withstand higher moment and horizontal loads compared with unperforated foundations. The experimental and numerical results have been used to develop design expressions that could be employed by practitioners to estimate the vertical and combined load bearing capacity of these foundation types.
7

Topology optimization for additive manufacture

Aremu, Adedeji January 2013 (has links)
Additive manufacturing (AM) offers a way to manufacture highly complex designs with potentially enhanced performance as it is free from many of the constraints associated with traditional manufacturing. However, current design and optimisation tools, which were developed much earlier than AM, do not allow efficient exploration of AM's design space. Among these tools are a set of numerical methods/algorithms often used in the field of structural optimisation called topology optimisation (TO). These powerful techniques emerged in the 1980s and have since been used to achieve structural solutions with superior performance to those of other types of structural optimisation. However, such solutions are often constrained during optimisation to minimise structural complexities, thereby, ensuring that solutions can be manufactured via traditional manufacturing methods. With the advent of AM, it is necessary to restructure these techniques to maximise AM's capabilities. Such restructuring should involve identification and relaxation of the optimisation constraints within the TO algorithms that restrict design for AM. These constraints include the initial design, optimisation parameters and mesh characteristics of the optimisation problem being solved. A typical TO with certain mesh characteristics would involve the movement of an assumed initial design to another with improved structural performance. It was anticipated that the complexity and performance of a solution would be affected by the optimisation constraints. This work restructured a TO algorithm called the bidirectional evolutionary structural optimisation (BESO) for AM. MATLAB and MSC Nastran were coupled to study and investigate BESO for both two and three dimensional problems. It was observed that certain parametric values promote the realization of complex structures and this could be further enhanced by including an adaptive meshing strategy (AMS) in the TO. Such a strategy reduced the degrees of freedom initially required for this solution quality without the AMS.
8

CEDAR: A Dimensionally Adaptive Flow Solver for Cylindrical Combustors

Hosler, Ty R. 06 December 2021 (has links)
This thesis discusses the application, evaluation, and extension of dimensionally adaptive meshing to the numerical solution of velocity and pressure fields inside cylindrical reactors. Due to the high length to diameter ratios of many cylindrical reactor vessels the flow field can become axisymmetric, allowing for simplification of the governing equations and significant reduction in computational time required for solution. A fully 3D solver is developed from existing computational tools at BYU and validated against theoretical velocity profiles for pipe flow at various Reynolds numbers, as well as with experimental data for an axial-fired center jet with recirculating flow. Dimensionally adaptive meshing is then incorporated into the validated 3D solver. The boundary conditions and assumptions at the dimensional boundary are discussed. The flow information is passed across the boundary through spatial mass-weighted averaging. The 3D and axisymmetric computational domains are decoupled from one another so information can only be passed from the 3D domain downstream to the axisymmetric domain. The dimensional boundary placement must meet two main requirements, the flow must be one-way and axisymmetric. It is found that the flow becomes axisymmetric early on in the reactor (~0.3-0.4 m), but recirculation exists farther downstream (until ~0.61 m) and thus governs the placement of the dimensional boundary. The resulting computational tool capable of running simulations using dimensionally adaptive meshes is called CEDAR (Computationally Efficient Dimensionally Adaptive Recirculating flow solver). Several studies are then undertaken to examine CEDAR's ability to reproduce exit velocity profiles comparable to those produced by a fully 3D mesh, including variations in pressure, firing rate, and geometry. It is found that the flow structure inside the reactor is self-similar over a wide range of operating parameters as long as the burner jets are turbulent. This observation is supported by free and confined jet theory. These theories also provide a method for placing the dimensional boundary, which is a linear function of the confining geometry diameter only (assuming that the jet diameter is less than 1/10 the diameter of the confining geometry). All exit velocity profiles produced by CEDAR are on average within 5% of the fully 3D profiles. Timing studies reveal an average 5.16 times speedup in computational time over fully 3D computations.
9

Solution adaptive meshing strategies for flows with vortices

Kasmai, Naser Talon Shamsi 09 August 2008 (has links)
Simulations were performed to evaluate solution adaptive meshing strategies for flows with vortices whose axes of rotation are parallel to the bulk fluid motion. Two configurations were investigated: a wing in a wind tunnel and a missile spinning at 30Hz and 60Hz at 0◦ angle of attack with canards deflected 15◦. Feature-based descriptors were used to identify regions of the flow near vortices that are candidate regions for adaptive meshing. Several different adaptive meshing techniques were evaluated. These techniques include refinement around the vortex core, refinement near the vortex extent surface, refinement inside the extent surface, refinement inside and near the extent surface, and mesh regeneration using the vortex extent surface as an embedded surface. Results for the wing case, compared to experimental data, indicate that it is necessary to refine the region within and near the vortex extent surface to accurately recreate physical characteristics and achieve an acceptable solution.
10

Framework for Cohesive Zone Model Based Multiscale Damage Evolution in a Fatigue Environment

Thomas, Michael Andrew 24 June 2011 (has links)
No description available.

Page generated in 0.065 seconds