Spelling suggestions: "subject:"adaptive stepsize"" "subject:"daptive stepsize""
1 |
Adaptive stepsize control in path tracking for total degree homotopy continuation methodCheng, Chao-Chun 06 July 2012 (has links)
The theory of solving polynomial systems by homotopy continuation method has been proposed by Garcia, Zangwill and Drexler, and the most typical method in this category is total degree homotpy. The numerical implementation of tracking homotopy curves can be taken as two parts: prediction and correction. In this thesis we compare the performance of several prediction methods in the total degree homotopy, including Runge-Kutta method, Adams-Bashforth method and cubic Hermite method. In addition, we design an adaptive stepsize control algorithm in path tracking, which is based on the information obtained during Newton correction process. The numerical experiment shows that the stepsize control algorithm is quite efficient and reliable in path tracking. In the end we employ the algorithm for solving eigenvalue problems by random product homotopy method
|
2 |
Um método de linearização local com passo adaptativo para solução numérica de equações diferenciais estocásticas com ruído aditivoMaio, Pablo Aguiar de 31 July 2015 (has links)
Submitted by Pablo Aguiar De Maio (pabloamaio@outlook.com) on 2015-09-10T19:50:43Z
No. of bitstreams: 1
Pablo Aguiar De Maio - Dissertação - Um método de linearização local com passo adaptativo para solução numérica de equações diferenciais estocásticas com ruído aditivo.pdf: 2233029 bytes, checksum: d3ed48936d09fde216e44fb4d688b47d (MD5) / Approved for entry into archive by Janete de Oliveira Feitosa (janete.feitosa@fgv.br) on 2015-09-25T12:16:10Z (GMT) No. of bitstreams: 1
Pablo Aguiar De Maio - Dissertação - Um método de linearização local com passo adaptativo para solução numérica de equações diferenciais estocásticas com ruído aditivo.pdf: 2233029 bytes, checksum: d3ed48936d09fde216e44fb4d688b47d (MD5) / Approved for entry into archive by Marcia Bacha (marcia.bacha@fgv.br) on 2015-09-28T16:51:14Z (GMT) No. of bitstreams: 1
Pablo Aguiar De Maio - Dissertação - Um método de linearização local com passo adaptativo para solução numérica de equações diferenciais estocásticas com ruído aditivo.pdf: 2233029 bytes, checksum: d3ed48936d09fde216e44fb4d688b47d (MD5) / Made available in DSpace on 2015-09-28T16:51:50Z (GMT). No. of bitstreams: 1
Pablo Aguiar De Maio - Dissertação - Um método de linearização local com passo adaptativo para solução numérica de equações diferenciais estocásticas com ruído aditivo.pdf: 2233029 bytes, checksum: d3ed48936d09fde216e44fb4d688b47d (MD5)
Previous issue date: 2015-07-31 / In this work we present a new numerical method with adaptive stepsize based on the local linearization approach, to integrate stochastic differential equations with additive noise. We also propose a computational scheme that allows efficient implementation of this method, properly adapting the algorithm of Padé with scaling-squaring strategy to compute the exponential of matrices involved. To introduce the construction of this method, we briefly explain what stochastic differential equations are, the mathematics that is behind them, their relevance to the modeling of various phenomena, and the importance of using numerical methods to evaluate this kind of equations. A succinct study of numerical stability is also presented on the following pages. With this dissertation, we intend to introduce the necessary basis for the construction of the new method/scheme. At the end, several numerical experiments are performed to demonstrate, in a practical way, the effectiveness of the proposed method, comparing it with other methods commonly used. / Neste trabalho apresentamos um novo método numérico com passo adaptativo baseado na abordagem de linearização local, para a integração de equações diferenciais estocásticas com ruído aditivo. Propomos, também, um esquema computacional que permite a implementação eficiente deste método, adaptando adequadamente o algorítimo de Padé com a estratégia “scaling-squaring” para o cálculo das exponenciais de matrizes envolvidas. Antes de introduzirmos a construção deste método, apresentaremos de forma breve o que são equações diferenciais estocásticas, a matemática que as fundamenta, a sua relevância para a modelagem dos mais diversos fenômenos, e a importância da utilização de métodos numéricos para avaliar tais equações. Também é feito um breve estudo sobre estabilidade numérica. Com isto, pretendemos introduzir as bases necessárias para a construção do novo método/esquema. Ao final, vários experimentos numéricos são realizados para mostrar, de forma prática, a eficácia do método proposto, e compará-lo com outros métodos usualmente utilizados.
|
3 |
Regularization of inverse problems in image processingJalalzai, Khalid 09 March 2012 (has links) (PDF)
Les problèmes inverses consistent à retrouver une donnée qui a été transformée ou perturbée. Ils nécessitent une régularisation puisque mal posés. En traitement d'images, la variation totale en tant qu'outil de régularisation a l'avantage de préserver les discontinuités tout en créant des zones lisses, résultats établis dans cette thèse dans un cadre continu et pour des énergies générales. En outre, nous proposons et étudions une variante de la variation totale. Nous établissons une formulation duale qui nous permet de démontrer que cette variante coïncide avec la variation totale sur des ensembles de périmètre fini. Ces dernières années les méthodes non-locales exploitant les auto-similarités dans les images ont connu un succès particulier. Nous adaptons cette approche au problème de complétion de spectre pour des problèmes inverses généraux. La dernière partie est consacrée aux aspects algorithmiques inhérents à l'optimisation des énergies convexes considérées. Nous étudions la convergence et la complexité d'une famille récente d'algorithmes dits Primal-Dual.
|
Page generated in 0.0726 seconds