Spelling suggestions: "subject:"local linearization exponential schemes"" "subject:"local linearization xponential schemes""
1 |
Um método de linearização local com passo adaptativo para solução numérica de equações diferenciais estocásticas com ruído aditivoMaio, Pablo Aguiar de 31 July 2015 (has links)
Submitted by Pablo Aguiar De Maio (pabloamaio@outlook.com) on 2015-09-10T19:50:43Z
No. of bitstreams: 1
Pablo Aguiar De Maio - Dissertação - Um método de linearização local com passo adaptativo para solução numérica de equações diferenciais estocásticas com ruído aditivo.pdf: 2233029 bytes, checksum: d3ed48936d09fde216e44fb4d688b47d (MD5) / Approved for entry into archive by Janete de Oliveira Feitosa (janete.feitosa@fgv.br) on 2015-09-25T12:16:10Z (GMT) No. of bitstreams: 1
Pablo Aguiar De Maio - Dissertação - Um método de linearização local com passo adaptativo para solução numérica de equações diferenciais estocásticas com ruído aditivo.pdf: 2233029 bytes, checksum: d3ed48936d09fde216e44fb4d688b47d (MD5) / Approved for entry into archive by Marcia Bacha (marcia.bacha@fgv.br) on 2015-09-28T16:51:14Z (GMT) No. of bitstreams: 1
Pablo Aguiar De Maio - Dissertação - Um método de linearização local com passo adaptativo para solução numérica de equações diferenciais estocásticas com ruído aditivo.pdf: 2233029 bytes, checksum: d3ed48936d09fde216e44fb4d688b47d (MD5) / Made available in DSpace on 2015-09-28T16:51:50Z (GMT). No. of bitstreams: 1
Pablo Aguiar De Maio - Dissertação - Um método de linearização local com passo adaptativo para solução numérica de equações diferenciais estocásticas com ruído aditivo.pdf: 2233029 bytes, checksum: d3ed48936d09fde216e44fb4d688b47d (MD5)
Previous issue date: 2015-07-31 / In this work we present a new numerical method with adaptive stepsize based on the local linearization approach, to integrate stochastic differential equations with additive noise. We also propose a computational scheme that allows efficient implementation of this method, properly adapting the algorithm of Padé with scaling-squaring strategy to compute the exponential of matrices involved. To introduce the construction of this method, we briefly explain what stochastic differential equations are, the mathematics that is behind them, their relevance to the modeling of various phenomena, and the importance of using numerical methods to evaluate this kind of equations. A succinct study of numerical stability is also presented on the following pages. With this dissertation, we intend to introduce the necessary basis for the construction of the new method/scheme. At the end, several numerical experiments are performed to demonstrate, in a practical way, the effectiveness of the proposed method, comparing it with other methods commonly used. / Neste trabalho apresentamos um novo método numérico com passo adaptativo baseado na abordagem de linearização local, para a integração de equações diferenciais estocásticas com ruído aditivo. Propomos, também, um esquema computacional que permite a implementação eficiente deste método, adaptando adequadamente o algorítimo de Padé com a estratégia “scaling-squaring” para o cálculo das exponenciais de matrizes envolvidas. Antes de introduzirmos a construção deste método, apresentaremos de forma breve o que são equações diferenciais estocásticas, a matemática que as fundamenta, a sua relevância para a modelagem dos mais diversos fenômenos, e a importância da utilização de métodos numéricos para avaliar tais equações. Também é feito um breve estudo sobre estabilidade numérica. Com isto, pretendemos introduzir as bases necessárias para a construção do novo método/esquema. Ao final, vários experimentos numéricos são realizados para mostrar, de forma prática, a eficácia do método proposto, e compará-lo com outros métodos usualmente utilizados.
|
Page generated in 0.1719 seconds