• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 5
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 47
  • 17
  • 12
  • 12
  • 12
  • 11
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Développement d'un système robotique pour des essais au sol du système de contrôle d'attitude et d'orbite d'un CubeSat / Development of a robotic system for CubeSat Attitude Determination and Control System ground tests

Gavrilovich, Irina 14 December 2016 (has links)
Après le lancement du premier satellite artificiel en 1957, l'évolution de diverses technologies a favorisé la miniaturisation des satellites. En 1999, le développement des nano-satellites modulaires appelés CubeSats, qui ont la forme d'un cube d'un décimètre de côté et une masse de 1 kg à 10 kg, a été initié par un effort commun de l'Université polytechnique de Californie et de l'Université de Stanford. Depuis lors, grâce à l’utilisation de composants électroniques standards à faible coût, les CubeSats se sont largement répandus.Au cours des dernières années, le nombre de CubeSats lancés a régulièrement augmenté, mais moins de la moitié des missions ont atteint leurs objectifs. L'analyse des défaillances des CubeSats montre que la cause la plus évidente est le manque d’essais adéquats des composants du système ou du système au complet. Parmi les tâches particulièrement difficiles, on compte les essais « hardware-in-the-loop » (HIL) du système de contrôle d'attitude et d'orbite (SCAO) d’un CubeSat. Un système dédié à ces essais doit permettre des simulations fiables de l'environnement spatial et des mouvements réalistes des CubeSats. La façon la plus appropriée d’obtenir de telles conditions d’essai repose sur l’utilisation d’un coussin d'air. Toutefois, les mouvements du satellite sont alors contraints par les limites géométriques, qui sont inhérentes aux coussins d'air. De plus, après 15 années de développements de CubeSats, la liste des systèmes proposés pour tester leur SCAO reste très limitée.Aussi, cette thèse est consacrée à l’étude et à la conception d’un système robotique innovant pour des essais HIL du SCAO d’un CubeSat. La nouveauté principale du système d'essai proposé est l’usage de quatre coussins d'air au lieu d'un seul et l’emploi d’un robot manipulateur. Ce système doit permettre des mouvements non contraints du CubeSat. Outre la conception du système d'essai, cette thèse porte sur les questions liées: (i) à la détermination de l'orientation d’un CubeSat au moyen de mesures sans contact; (ii) au comportement de l’assemblage des coussins d'air; (iii) à l'équilibrage des masses du système.Afin de vérifier la faisabilité de la conception proposée, un prototype du système d'essai a été développé et testé. Plusieurs modifications destinées à en simplifier la structure et à réduire le temps de fabrication ont été effectuées. Un robot Adept Viper s650 est notamment utilisé à la place d'un mécanisme sphérique spécifiquement conçu. Une stratégie de commande est proposée dans le but d’assurer un mouvement adéquat du robot qui doit suivre les rotations du CubeSat. Finalement, les résultats obtenus sont présentés et une évaluation globale du système d'essai est discutée. / After the launch of the first artificial Earth satellite in 1957, the evolution of various technologies has fostered the miniaturization of satellites. In 1999, the development of standardized modular satellites with masses limited to a few kilograms, called CubeSats, was initiated by a joint effort of California Polytechnic State University and Stanford University. Since then, CubeSats became a widespread and significant trend, due to a number of available off-the-shelf low cost components.In last years, the number of launched CubeSats constantly grows, but less than half of all CubeSat missions achieved their goals (either partly or completely). The analysis of these failures shows that the most evident cause is a lack of proper component-level and system-level CubeSat testing. An especially challenging task is Hardware-In-the-Loop (HIL) tests of the Attitude Determination and Control System (ADCS). A system devoted to these tests shall offer reliable simulations of the space environment and allow realistic CubeSat motions. The most relevant approach to provide a satellite with such test conditions consists in using air bearing platforms. However, the possible satellite motions are strictly constrained because of geometrical limitations, which are inherent in the air bearing platforms. Despite 15 years of CubeSat history, the list of the air bearing platforms suitable for CubeSat ADCS test is very limited.This thesis is devoted to the design and development of an air bearing testbed for CubeSat ADCS HIL testing. The main novelty of the proposed testbed design consists in using four air bearings instead of one and in utilizing a robotic arm, which allows potentially unconstrained CubeSat motions. Besides the testbed design principle, this thesis deals with the related issues of the determination of the CubeSat orientation by means of contactless measurements, and of the behavior of the air bearings, as well as with the need of a mass balancing method.In order to verify the feasibility of the proposed design, a prototype of the testbed is developed and tested. Several modifications aimed at simplifying the structure and at shortening the fabrication timeline have been made. For this reason, the Adept Viper s650 robot is involved in place of a custom-designed 4DoF robotic arm. A control strategy is proposed in order to provide the robot with a proper motion to follow the CubeSat orientation. Finally, the obtained results are presented and the overall assessment of the proposed testbed is put into perspective.
22

Modeling and Implementation of Current-Steering Digital-to-Analog Converters

Andersson, Ola January 2005 (has links)
Data converters, i.e., analog-to-digital converters (ADCs) and digital-to-analog converters (DACs), are interface circuits between the analog and digital domains. They are used in, e.g., digital audio applications, data communication applications, and other types of applications where conversion between analog and digital signal representation is required. This work covers different aspects related to modeling, error correction, and implementation of DACs for communication applications where the requirements on the circuits in terms of speed and linearity are hard. The DAC architecture considered in this work is the current-steering DAC, which is the most commonly used architecture for high-speed applications. Transistor-level simulation of complex circuits using accurate transistor models require long simulation times. A transistor-level model of a DAC used in a system simulation is likely to be a severe bottleneck limiting the overall system simulation speed. Moreover, investigations of stochastic parameter variations require multiple simulation runs with different parameter values making transistor-level models unsuitable. Therefore, there is a need for behavioral-level models with reasonably short simulation times. Behavioral-level models can also be used to find the requirements on different building blocks on high abstraction levels, enabling the use of efficient topdown design methodologies. Models of different nonideal properties in current-steering DACs are used and developed in this work. Static errors typically dominates the low-frequency behavior of the DAC. One of the limiting factors for the static linearity of a current-steering DAC is mismatch between current sources. A well-known model of this problem is used extensively in this work for evaluation of different ideas and techniques for linearity enhancement. The highfrequency behavior of the DAC is typically dominated by dynamic errors. Models oftwo types of dynamic errors are developed in this work. These are the dynamic errors caused by parasitic capacitance in wires and transistors and glitches caused by asymmetry in the settling behavior of a current source. The encoding used for the digital control word in a current steering DAC has a large influence on the circuit performance, e.g., in terms static linearity and glitches. In this work, two DAC architectures are developed. These are denoted the decomposed and partially decomposed architectures and utilize encoding strategies aiming at a high circuit performance by avoiding unnecessary switching of current sources. The developed architectures are compared with the well-known binary-weighted and segmented architectures using behavioral-level simulations. It can be hard to meet a DAC design specification using a straightforward implementation. Techniques for compensation of errors that can be applied to improve the DAC linearity are studied. The well-known dynamic element matching (DEM) techniques are used for transforming spurious tones caused by matching errors into white or shaped noise. An overview of these techniques are given in this work and a DEM technique for the decomposed DAC architecture is developed. In DS modulation, feedback of the quantization error is utilized to spectrally shape the quantization noise to reduce its power within the signal band. A technique based on this principle is developed for spectral shaping of DAC nonlinearity errors utilizing a DAC model in a feedback loop. Two examples of utilization of the technique are given. Four different current-steering DACs implemented in CMOS technology are developed to enable comparison between behavioral-level simulations and measurements on actual implementations and to provide platforms for evaluation of different techniques for linearity improvement. For example, a 14-bit DEM DAC is implemented and measurement results are compared with simulation results. A good agreement between measured and simulated results is obtained. Moreover, a configurable 12-bit DAC capable of operating with different degrees of segmentation and decomposition is implemented to evaluate the proposed decomposed architecture. Measurement results agree with results from behavioral-level simulations and indicate that the decomposed architecture is a viable alternative to the commonly used segmented architecture.
23

PASSIVE ATTITUDE STABILIZATION FOR SMALL SATELLITES

Rawashdeh, Samir Ahmed 01 January 2010 (has links)
This thesis addresses the problem of designing and evaluating passive satellite attitude control systems for small satellites. Passive stabilization techniques such as Gravity Gradient stabilization, Passive Magnetic Stabilization, and Aerodynamic stabilization in Low Earth Orbit utilize the geometric and magnetic design of a satellite and the orbit properties to passively provide attitude stabilization and basic pointing. The design of such stabilization systems can be done using a high fidelity simulation of the satellite and the environmental effects in the orbit under consideration to study the on-orbit behavior and the effectiveness of the stability system in overcoming the disturbance torques. The Orbit Propagator described in this thesis is developed to include models for orbit parameters, Gravity Gradient torque, Aerodynamic Torque, Magnetic Torque, and Magnetic Hysteresis Material for angular rate damping. Aerodynamic stabilization of a three-unit CubeSat with deployable side panels in a “shuttlecock” design is studied in detail. Finally, the Passive Magnetic Stabilization system of KySat-1, a one-unit CubeSat, is also described in detail and the simulation results are shown.
24

High-Speed Low-Power Analog to Digital Converter for Digital Beam Forming Systems

January 2017 (has links)
abstract: Time-interleaved analog to digital converters (ADCs) have become critical components in high-speed communication systems. Consumers demands for smaller size, more bandwidth and more features from their communication systems have driven the market to use modern complementary metal-oxide-semiconductor (CMOS) technologies with shorter channel-length transistors and hence a more compact design. Downscaling the supply voltage which is required in submicron technologies benefits digital circuits in terms of power and area. Designing accurate analog circuits, however becomes more challenging due to the less headroom. One way to overcome this problem is to use calibration to compensate for the loss of accuracy in analog circuits. Time-interleaving increases the effective data conversion rate in ADCs while keeping the circuit requirements the same. However, this technique needs special considerations as other design issues associated with using parallel identical channels emerge. The first and the most important is the practical issue of timing mismatch between channels, also called sample-time error, which can directly affect the performance of the ADC. Many techniques have been developed to tackle this issue both in analog and digital domains. Most of these techniques have high complexities especially when the number of channels exceeds 2 and some of them are only valid when input signal is a single tone sinusoidal which limits the application. This dissertation proposes a sample-time error calibration technique which bests the previous techniques in terms of simplicity, and also could be used with arbitrary input signals. A 12-bit 650 MSPS pipeline ADC with 1.5 GHz analog bandwidth for digital beam forming systems is designed in IBM 8HP BiCMOS 130 nm technology. A front-end sample-and-hold amplifier (SHA) was also designed to compare with an SHA-less design in terms of performance, power and area. Simulation results show that the proposed technique is able to improve the SNDR by 20 dB for a mismatch of 50% of the sampling period and up to 29 dB at 37% of the Nyquist frequency. The designed ADC consumes 122 mW in each channel and the clock generation circuit consumes 142 mW. The ADC achieves 68.4 dB SNDR for an input of 61 MHz. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2017
25

OPS-SAT Software Simulator

Suteu, Silviu Cezar January 2016 (has links)
OPS-SAT is an in-orbit laboratory mission designed to allow experimenters todeploy new on-board software and perform in-orbit demonstrations of new tech-nology and concepts related to mission operations. The NanoSat MO Frame-work facilitates the process of developing experimental on-board software for OPS-SAT by abstracting the complexities related to communication across the space toground link as well as the details of low-level device access. The objective of thisproject is to implement functional simulation models of OPS-SAT peripherals andorbit/attitude behavior, which integrated together with the NanoSat MO Frame-work provide a sufficiently realistic runtime environment for OPS-SAT on-boardsoftware experiment development. Essentially, the simulator exposes communi-cation interfaces for executing commands which affect the payload instrumentsand/or retrieve science data and telemetry. The commands can be run either fromthe MO Framework or manually, from an intuitive GUI which performs syntaxcheck. In this case, the output will be displayed for advanced debugging. The endresult of the thesis work is a virtual machine which has all the tools installed todevelop cutting edge technology space applications.
26

Low-Cost Reaction Wheel Design for CubeSat Applications

Bonafede, Nicholas J, Jr. 01 August 2020 (has links) (PDF)
As science instruments on CubeSats become more sensitive to the attitude of the spacecraft, better methods must be employed to provide the accuracy needed to complete the planned mission. While systems that provide the accuracy required are available commercially, these solutions are not cost-effective, do not allow the design to be tailored to a specific mission, and most importantly, do not give students hand-on experience with attitude control actuators. This thesis documents the design, modeling, and simulation of a low-cost, student-fabricated, reaction wheel system for use in 3U CubeSat satellites. The entire design process for the development of this reaction wheel is based on fundamental design principles and can be replicated for either larger or smaller spacecraft as needed. Additionally, plans for bringing this design up to a prototyping and testing phase are outlined for continued use of this design in the Cal Poly CubeSat Laboratory.
27

Solid-phase synthesis of duocarmycin analogues and the effect of C-terminal substitution on biological activity

Stephenson, M.J., Howell, L.A., O'Connell, M.A., Fox, K.R., Adcock, C., Kingston, J., Sheldrake, Helen M., Pors, Klaus, Collingwood, S.P., Searcey, M. 10 September 2015 (has links)
Yes / The duocarmycins are potent antitumour agents with potential in the development of antibody drug conjugates (ADCs) as well as being clinical candidates in their own right. In this paper, we describe the synthesis of a duocarmycin monomer (DSA) that is suitably protected for utilisation in solid phase synthesis. The synthesis was performed on a large scale and the resulting racemic protected Fmoc-DSA subunit was separated by supercritical fluid chromatography (SFC) into the single enantiomers. Application to solid phase synthesis methodology gave a series of monomeric and extended duocarmycin analogues with amino acid substituents. The DNA sequence selectivity was similar to previous reports for both the monomeric and extended compounds. The substitution at the C-terminus of the duocarmycin caused a decrease in antiproliferative activity for all of the compounds studied. An extended compound containing an alanine at the C-terminus was converted to the primary amide or to an extended structure containing a terminal tertiary amine but this had no beneficial effects on biological activity. / MJS was funded by Novartis and UEA. We thank the EPSRC Mass Spectrometry Service, Swansea. We thank Richard Robinson and Julia Hatto at Novartis for help in the large scale synthesis.
28

Gyroless Nanosatellite Attitude Determination Using an Array of Spatially Distributed Accelerometers

Haydon, Kory J 01 June 2023 (has links) (PDF)
The low size and budget of typical nanosatellite missions limit the available sensors for attitude estimation. Relatively high noise MEMS gyroscopes often must be employed when accurate knowledge of the spacecraft’s angular velocity is necessary for attitude determination and control. This thesis derived and tested in simulation the “Virtual Gyroscope” algorithm, which replaced a standard gyroscope with an array of spatially distributed accelerometers for a 1U CubeSat mission. A MEMS accelerometer model was developed and validated using Root Allan Variance, and the Virtual Gyroscope was tested both in the open loop configuration and as a replacement for a gyroscope in a Multiplicative Extended Kalman Filter. It was found that the quality of the Virtual Gyroscope’s rate measurement improved with a larger and higher quality array, but the error in the estimate was very large. The low signal-to-noise ratio and the unknown bias in the accelerometers caused the angular velocity estimate from the accelerometer array to be too poor for use in the propagation step of the Kalman filter. The Kalman filter performed better with attitude measurements alone than with the Virtual Gyroscope, even when the attitude were delivered at a low rate with added noise. Overall, the current Virtual Gyroscope algorithm that is presented in this thesis is not suitable to replace a MEMS gyroscope in a nanosatellite mission, although there is room for future improvements using bias prediction for the individual accelerometers in the array.
29

Adaptive digital calibration techniques for high speed, high resolution SIGMA DELTA ADCs for broadband wireless applications

Jalali Farahani, Bahar 02 December 2005 (has links)
No description available.
30

Řízení orientace družice - laboratorní úloha / Orientation Control of Satellite - Laboratory Experiment

Neužil, Ondřej January 2018 (has links)
This diploma thesis is about the basics of satellite systems, about their sorting, usage and technologies. An important part is the description of the principles controlling and stabilization of the small experimental CubeSat type satellites. The main point is the proposition and construction of the laboratory model of the CubeSat type satellite that should simulate the chosen methods of controlling and stabilization in laboratory conditions. The thesis describes the construction of the electronic parts of the model, the controlling software of the satellite’s processor and user software for easy controlling by PC.

Page generated in 0.0415 seconds