• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 646
  • 51
  • 45
  • 34
  • 28
  • 28
  • 22
  • 5
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 1208
  • 1208
  • 499
  • 297
  • 284
  • 280
  • 264
  • 206
  • 143
  • 127
  • 112
  • 106
  • 105
  • 102
  • 101
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Lateral Fusion Bonding of Additive Manufactured Fiber-Reinforced Polymer Composites

Pasita Pibulchinda (9012281) 02 August 2023 (has links)
<p>Extrusion Deposition Additive Manufacturing (EDAM) is a process in which fiber-filled thermoplastic polymers pellets get molten in the extruder and deposited onto a build plate in a layer-by-layer basis. The use of short fiber composite for EDAM has enabled large-scale 3D printing structures and tools for traditional composite manufacturing processes. Successful EDAM production critically depends on the understanding of the process-structure-property relationship. Especially on the bonding between the beads which is of paramount importance in additive manufacturing since it affects primarily the fracture and strength characteristics of the printed part. Bonding is influenced mainly by the temperature history and the contact between the beads. Both of which is dependent on the fiber orientation within the bead induced by the flow deformation that occurs according to the printing parameters. This study aims to investigate and model the complex relationship between the printing conditions and inter-bead bonding in the lateral direction.</p> <p>A framework was developed to facilitate this aim, and it contains a fusion bonding model that couples the time-temperature history and the bead-to-bead contact interface. Four deposition parameters were studied: the nozzle height, ratio of the print velocity to extrudate velocity, bead-to-bead spacing, and layer time. First, a deposition flow model was developed, utilizing the anisotropic viscous flow model and smooth particle hydrodynamic finite element formulation, to predict the fiber orientation state across the deposited bead and the bead-to-bead interface for the given set of deposition parameters. Next, the effect of printing conditions on the temperature history of the bead was discovered by utilizing the heat transfer process simulation in ADDITIVE3D. Third, the experimental characterization procedure for mode I fracture toughness in the lateral direction was developed, and the fracture toughness was characterized using linear elastic fracture mechanics principles. Lastly, the phenomenological model for non-isothermal lateral fusion bonding was characterized using the bead contact interface, temperature history, and fracture toughness properties. This work showed a comprehensive effort in fusion bonding modeling while also presented a valuable process-structure-property-performance relationship in EDAM.  Guidance on the selection of printing conditions and strategy can be made using the developed model to print higher-strength parts.  </p>
72

The fabrication of integrated strain sensors for 'smart' implants using a direct write additive manufacturing approach

Wei, Li-Ju January 2015 (has links)
Over the 1980’s, the introduction of Additive Manufacturing (AM) technologies has provided alternative methods for the fabrication of complex three-dimensional (3D) synthetic bone tissue implant scaffolds. However, implants are still unable to provide post surgery feedback. Implants often loosen due to mismatched mechanical properties of implant material and host bone. The aim of this PhD research is to fabricate an integrated strain gauge that is able to monitor implant strain for diagnosis of the bone healing process. The research work presents a method of fabricating electrical resistance strain gauge sensors using rapid and mask-less process by experimental development (design of experiment) using the nScrypt 3Dn-300 micro dispensing direct write (MDDW) system. Silver and carbon electrical resistance strain gauges were fabricated and characterised. Carbon resistive strain gauges with gauge factor values greater than 16 were measured using a proven cantilever bending arrangement. This represented a seven to eight fold increase in sensitivity over commercial gauges that would be glued to the implant materials. The strain sensor fabrication process was specifically developed for directly fabricating resistive strain sensor structures on synthetic bone implant surface (ceramic and titanium) without the use of glue and to provide feedback for medical diagnosis. The reported novel approach employed a biocompatible parylene C as a dielectric layer between the electric conductive titanium and the strain gauge. Work also showed that parylene C could be used as an encapsulation material over strain gauges fabricated on ceramic without modifying the performance of the strain gauge. It was found that the strain gauges fabricated on titanium had a gauge factor of 10.0±0.7 with a near linear response to a maximum of 200 micro strain applied. In addition, the encapsulated ceramic strain gauge produced a gauge factor of 9.8±0.6. Both reported strain gauges had a much greater sensitivity than that of standard commercially available resistive strain gauges.
73

Investigation of an Investment Casting Method Combined with Additive Manufacturing Methods for Manufacturing Lattice Structures

Kodira, Ganapathy D. 08 1900 (has links)
Cellular metals exhibit combinations of mechanical, thermal and acoustic properties that provide opportunities for various implementations and applications; light weight aerospace and automobile structures, impact and noise absorption, heat dissipation, and heat exchange. Engineered cell topologies enable one to control mechanical, thermal, and acoustic properties of the gross cell structures. A possible way to manufacture complex 3D metallic cellular solids for mass production with a relatively low cost, the investment casting (IC) method may be used by combining the rapid prototyping (RP) of wax or injection molding. In spite of its potential to produce mass products of various 3D cellular metals, the method is known to have significant casting porosity as a consequence of the complex cellular topology which makes continuous fluid's access to the solidification interface difficult. The effects of temperature on the viscosity of the fluids were studied. A comparative cost analysis between AM-IC and additive manufacturing methods is carried out. In order to manufacture 3D cellular metals with various topologies for multi-functional applications, the casting porosity should be resolved. In this study, the relations between casting porosity and processing conditions of molten metals while interconnecting with complex cellular geometries are investigated. Temperature, and pressure conditions on the rapid prototyping – investment casting (RP-IC) method are reported, thermal stresses induced are also studied. The manufactured samples are compared with those made by additive manufacturing methods.
74

Additive Friction Stir Manufacturing of 7055 Aluminum Alloy

Puleo, Shawn Michael 01 May 2016 (has links)
The objective of the report is to investigate the feasibility and reliability of additive friction stir manufacturing of 7055 aluminum alloy. This is a technique in which multiple lap welds are performed to create a three-dimensional part out of relatively thin plate aluminum. To accomplish this, a four inch stack of 7055 aluminum alloy lap welds must be created. The solid weld nugget is then machined out of the center of the welded stack to create ASTM approved subsize tensile coupons. Rockwell hardness, yield strength, ultimate tensile strength, and percent elongation information is gathered from the tensile coupons to investigate the effectiveness of the additive friction stir manufacturing process. The data shows that the additive manufactured material experiences a significant reduction in strength and percent elongation while not showing any significant response to heat treatment. Suggestions are made regarding possible changes to the weld schedule that could improve the material properties of the additive manufactured aluminum.
75

Microstructure heterogeneity in additive manufactured Ti-6Al-4V

Zhao, Hao January 2017 (has links)
Additive manufacturing (AM) is a novel near-net-shape manufacturing technology which deposited a component layer by layer directly from 3D CAD files. This rapid and complex weld pool process may introduce short and long range microstructure heterogeneities, which can potentially impact on the local mechanical properties of AM components. The present research thus focuses on the quantitatively analysing the microstructural heterogeneity, by the development and application of methods for the SEBM and WAAM Ti-6Al-4V parts. An additive manufacturing microstructure quantification tool, 'AMMQ', has been developed that combines automatic high resolution SEM image mapping with batch image analysis, to enable efficient quantification over large areas at the required resolution. It was found that the microstructural variation could be described by two key parameters, namely: the mean alpha plate spacing and mean β circularity of the retained β phase. The former corresponds to the combined effect of the rate of solid-state phase transformation upon cooling through the β transus in the first sub-Tβ thermal cycles followed by coarsening, whereas the latter attributes to a spheroidisation effect during subsequent re-heating and annealing below the β transus. The microstructure analysis algorithms showed adequate consistency for the possible varying imaging conditions, and for the different AM Ti-6Al-4V microstructure morphologies. In the SEBM specimens, a layer-scale periodicity in β phase circularity was detected, and a systematic drift of 'hot/cold regions was seen in the geometric specimens. Numerical modelling using a Rosenthal's model showed that the varied cooling conditions with respect to layer depth could be responsible for the layer-wise heterogeneity. Moreover, it has been shown that there is a direct linkage between thermal input, microstructure, and porosity density, as lack of fusion defects were detected in regions of low heat input, as inferred from local alpha plate measurements. This heterogeneity can firstly attribute to the SEBM control themes which were not optimised. Secondly, the heat dissipation condition for each geometry could also have affected the accumulated heat received for each volume of a part. In the WAAM specimens, a periodic microstructure pattern was consistently seen in the steady-state regions, where three typical microstructure morphologies were present: fine basketweave, colony alpha, and coarse basketweave. Micro-hardness mapping and in-situ tensile strain analysis were performed to investigate the microstructural influence on mechanical properties. It was found that both the hardness distribution and the tensile strain distribution was a function of the microstructural heterogeneity and that thin bands within each deposited layer with a colony alpha morphology appeared to be the main region of weakness within the deposited microstructures. Otherwise, the local hardness and tensile strength varied inversely to the local mean alpha plate spacing as expected. Finally, two important microstructure evolution mechanisms were proposed: i) alpha plate coarsening by the joining of neighbouring β layer as β phase volume fraction increases as the temperature approaches Tβ; ii) formation of the colony alpha by regrowth from a small fraction of alpha remnants at temperatures very close to Tβ.
76

A process planning approach for hybrid manufacture of prismatic polymer components

Zhu, Zicheng January 2013 (has links)
The 21st century demand for innovation is leading towards a revolution in the way products are perceived. This will have a major impact on manufacturing technologies as current product innovation is constrained by the available manufacturing processes, which function independently. One of the most significant developments is the emergence of hybrid manufacturing technologies integrating various individual manufacturing processes. Hybrid processes utilise the advantages of the independent processes whilst minimising their weaknesses as well as extending application areas. Despite the fact that the drawbacks of the individual processes have been significantly reduced, the application of state of the art hybrid technology has always been constrained by the capabilities of their constituent processes either from technical limitations or production costs. In particular, it is virtually impossible to machine complex parts due to limited cutting tool accessibility. By contrast, additive manufacturing (AM) techniques completely solve the tool accessibility issue, but this increased flexibility and automation is achieved by compromising on part accuracy and surface quality. Furthermore, the shape and size of raw materials have to be specific for each hybrid process. More importantly, process planning methods capable of effectively utilising manufacturing resources for hybrid processes are highly limited. In this research, a hybrid process, entitled iAtractive, combining additive, subtractive and inspection processes is proposed. An experimental methodology has been designed and implemented, by which a generative reactionary process planning algorithm (GRP2A) and feature-based decision-making logic (FDL) is developed. GRP2A enables a complex part to be accurately manufactured as one complete unit in the shortest production time possible. FDL provides a number of manufacturing strategies, allowing existing parts to be reused and transformed into final parts with additional features and functionalities. A series of case studies have been manufactured from zero and existing parts, demonstrating the efficacy of the iAtractive process and the developed GRP2A and FDL, which are based on a manual process. The major contribution to knowledge is the new vision for a hybrid process, which is not constrained by the capability of the individual processes and raw material in terms of shape and size. It has been demonstrated that the hybrid process together with GRP2A and FDL provides an effective solution to flexibly and accurately manufacture complex part geometries as well as remanufacture existing parts.
77

Printing materials and processes for electrochemical applications

Rymansaib, Zuhayr January 2017 (has links)
3D printing has revolutionised traditional manufacturing methods, opening up and distributing design and production of low cost, custom objects to virtually anyone. Tailoring of print material and part geometry allows for the benefits of this technology to reach multiple engineering and scientific fields, given appropriate design. A multidisciplinary approach concerning development of new print materials and methods was undertaken with the aim of further expansion and application of 3D printing towards electrochemical applications. Specific requirements of materials used in this domain, such as conductivity and chemical stability, led to development of functional printable carbon composites, compatible with consumer grade 3D printers. This allows facile production of cheap, reusable, disposable, electrodes for analytical applications, demonstrating heavy metal detection in aqueous media and allowing further tailoring to specific applications to be easily implemented. A new method for printing of cellulose solutions was developed, with post processing of printed parts resulting in biocompatible, porous, conductive structures. When used as electrodes in microbial fuel cells, improved power and current output over traditionally used carbon cloth electrodes was achieved. Other developments resulting from this work applicable to other fields include a novel trajectory generation method based on exponential functions which can be applied to practically any robotic system, as well as improvements to the production process of metal alloy filaments for 3D printing of metallic components.
78

A Low-Cost Custom Knee Brace Via Smartphone Photogrammetry

Miguel, Olivier 25 January 2019 (has links)
This thesis provided the foundational work for a low-cost three-dimensional (3D) printed custom knee brace. Specifically, the objective was to research, develop and implement a novel workflow aimed to be easy to use and available to anyone who has access to a smartphone camera and 3D printing services. The developed workflow was used to manufacture two prototypes which proved valuable in the design iterations. As a result, an improved hinge was designed which has increased mechanical strength. Additionally, a smartphone photogrammetry validation study was included which provided preliminary results on the accuracy and precision. This novel measurement method has the potential to require little training and could be disseminated through video instructions posted online. The intention is to enable the patient to collect their own “3D scan” with the help of a friend or family member, effectively removing the need to book an appointment simply for collecting custom measurements. Lastly, it would allow the clinician to focus all their time on clinically relevant design tasks such as checking alignment, fit and comfort, which could all potentially be improved by adopting such digital methods. The ultimate vision for this work is to enable manufacturing of better custom knee braces at a reduce cost which are easily accessible for low-income populations.
79

Integration of Ultrasonic Consolidation and Direct-Write to Fabricate an Embedded Electrical System Within a Metallic Enclosure

Hernandez, Ludwing A. 01 December 2010 (has links)
A research project was undertaken to integrate Ultrasonic Consolitation (UC) and Direct-Write (DW) technologies into a single apparatus to fabricate embedded electrical systems within an ultrasonically consolidated metallic enclosure. Process and design guidelines were developed after performing fundamental research on the operational capabilities of the implemented system. In order to develop such guidelines, numerous tests were performed on both UC and DW. The results from those tests, as well as the design and process guidelines for the fabrication of an embedded touch switch, can be used as a base for future research and experimentation on the UC-DW apparatus. The successful fabrication of an embedded touch switch proves the validity of the described design and process parameters and demonstrates the usefulness of this integration.
80

Additively-Manufactured Hybrid Rocket Consumable Structure for CubeSat Propulsion

Chamberlain, Britany L. 01 December 2018 (has links)
Three-dimensional, additive printing has emerged as an exciting new technology for the design and manufacture of small spacecraft systems. Using 3-D printed thermoplastic materials, hybrid rocket fuel grains can be printed with nearly any cross-sectional shape, and embedded cavities are easily achieved. Applying this technology to print fuel materials directly into a CubeSat frame results in an efficient, cost-effective alternative to existing CubeSat propulsion systems. Different 3-D printed materials and geometries were evaluated for their performance as propellants and as structural elements. Prototype "thrust columns" with embedded fuel ports were printed from a combination of acrylonitrile utadiene styrene (ABS) and VeroClear, a photopolymer substitute for acrylic. Gaseous oxygen was used as the oxidizer for hot-fire testing of prototype thrusters in ambient and vacuum conditions. Hot-fire testing in ambient and vacuum conditions on nine test articles with a combined total of 25 s burn time demonstrated performance repeatability. Vacuum specific impulse was measured at over 167 s and maximum thrust of individual thrust columns at 9.5 N. The expected ΔV to be provided by the four thrust columns of the consumable structure is approximately 37 m/s. With further development and testing, it is expected that the consumable structure has the potential to provide a much-needed propulsive solution within the CubeSat community with further applications for other small satellites.

Page generated in 0.1018 seconds