• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 646
  • 51
  • 45
  • 34
  • 28
  • 28
  • 22
  • 5
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 1208
  • 1208
  • 499
  • 297
  • 284
  • 280
  • 264
  • 206
  • 143
  • 127
  • 112
  • 106
  • 105
  • 102
  • 101
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Implementation of Additive Manufacturing Technology

Izgin, George January 2024 (has links)
Background: Manufacturing sectors are focusing on developing new manufacturing strategies and improving technologies since there has been a decrease in productivity in recent times. This has led to a massive growth in AM but also due to the benefits of implementing AM technologies. However, there are some challenges to overcome with AM implementation.  Purpose: The purpose of this study is to explore the AM implementation to achieve sustainability in manufacturing companies.   Research questions:  ·      What are the challenges in achieving sustainability with AM implementation for manufacturing companies? ·      How can manufacturing companies achieve environmental and economic sustainability with AM implementation through an industrial technology center?  Method: This study is based on a qualitative method with an abductive approach. The theoretical framework has been gathered through a literature review and the empirical data is based on interviews at the case company. The analysis is based on a thematic analysis method.  Conclusion: This thesis concluded that challenges in achieving sustainability with AM implementation are related to inaccuracies of produced parts and components and geometric complications. This was based on design complexities and printer capabilities. The other conclusion made was that there are aspects that contribute to environmental and economic sustainability through AM implementation such as enhancing process efficiency and low setup costs.
52

Additive Manufacturing of Refractory Metals

Awasthi, Prithvi Dev 05 1900 (has links)
Keen interest in additive manufacturing (AM) of refractory metals such as tungsten has been motivated by the demand for materials capable of enduring extreme temperatures in aerospace and nuclear applications. The aims of this work were to develop alloy compositions for high-temperature applications in the space propulsion and nuclear fusion sectors, and to establish processing windows for these compositions fabricated using laser powder bed fusion additive manufacturing (LPBF-AM). Tungsten (W)-based alloys are well-suited for high working temperatures because of their high melting points, excellent thermal conductivity, low corrosion resistance, and low coefficient of thermal expansion. The integrated computational materials engineering (ICME) approach was implemented to establish the connections among composition-printability-microstructure-properties-performance framework. ThermoCalc-CALPHAD software was used for Scheil-Gulliver solidification simulation (SGSS) of W-based compositions with various alloying element additions. Chromium, vanadium, and niobium were down-selected as suitable alloying elements based on SGSS results. Further, addition of carbon enhanced printability due to eutectic solidification by the formation of various carbides towards the end of solidification leading to crack-free microstructure as well as being vital for control of oxygen. This work demonstrates the successful manufacturing of multiple crack-free W-based alloy components using LPBF-AM, which had a wide range of working temperatures and enhanced mechanical properties.
53

Innovative Design and Development of PANDORA: Advancing Humanoid Robotics Through Additive Manufacturing

Fuge, Alexander Jonathan 31 October 2024 (has links)
This dissertation presents the innovative design and development of PANDORA, a full-sized humanoid robot that stands 1.9 meters tall and weighs 45 kilograms. Its highly configurable structure was created primarily using Additive Manufacturing(AM) techniques. PANDORA is designed to address the limitations of existing humanoid robots, particularly regarding accessibility, cost, and customization for research purposes. The robot features 32 degrees of freedom, enabling it to perform a wide range of human-like motions, such as walking, reaching, and manipulating objects. The development of PANDORA focuses on leveraging the flexibility of AM to create a lightweight, cost-effective, and easily modifiable robotic platform. The dissertation details the iterative design process, which includes the structural components for weight reduction while maintaining the necessary strength and durability for dynamic movements. The lower body of PANDORA incorporates advanced joint configurations and custom-designed linear actuators, initially developed for previous Terrestrial Robotics and Engineering Controls (TREC) Lab robots, such as THOR and ESCHER. The upper body features a cable-driven arm system, which is both lightweight and highly functional, offering eight degrees of freedom per arm. A significant contribution of this work is the development of design heuristics for AM, tailored specifically for the construction of large-scale robotic components. These heuristics were validated through extensive finite element analysis (FEA) and physical testing, ensuring the AM parts could withstand the loads and stresses encountered during operation. The open-source nature of the PANDORA platform, including all design files and documentation, further enhances its value to the research community, providing a robust foundation for future developments in humanoid robotics. / Doctor of Philosophy / This dissertation explores the creation of PANDORA, a life-sized robot designed to move and function similarly to a human. PANDORA is nearly 6 feet tall and weighs about 100 pounds, making it comparable in size to an average adult. What sets PANDORA apart from other robots is how it was made—using 3D printing technology, which allowed for a strong and lightweight structure. The main goal of this project was to develop a robot that researchers and hobbyists could easily build and modify. To achieve this, PANDORA was designed with affordability and accessibility in mind. By using 3D printing, the number of parts needed to build the robot was significantly reduced, making it easier to assemble and less expensive to produce. The robot's design is also open-source, meaning all the plans and details are freely available online, allowing others to build and improve upon this work. PANDORA has joints that mimic many human movements, such as walking and lifting objects. The arms, for instance, are designed to be both lightweight and highly flexible, making the robot capable of performing tasks that require precision and strength. This research demonstrates how advanced 3D printing can be used to create complex, functional robots and aims to push the boundaries of what is possible in robotics by making these technologies more accessible to everyone.
54

Thermoelectric Energy Harvesting in Harsh Environments and Laser Additive Manufacturing for Thermoelectric and Electromagnetic Materials

Sun, Kan 12 December 2024 (has links)
This dissertation presents innovative research at the intersection of thermoelectric solutions, additive manufacturing, and nuclear safety technology, addressing critical challenges in sensor powering for extreme environments, energy harvesting, and materials fabrication. The research is divided into three key areas, each contributing to advancements in its respective domain. First, a self-powered wireless through-wall data communication system was developed for monitoring nuclear facilities, specifically spent fuel storage dry casks. These facilities require continuous monitoring of internal conditions, including temperature, pressure, radiation, and humidity, under harsh environments characterized by high temperatures and intense radiation without any penetration through their walls. The constructed system integrated four modules: an energy harvester with power management circuits, an ultrasound wireless communication system using high-temperature piezoelectric transducers, electronic circuits for sensing and data transmission, and radiation shielding for electronics. Experimental validation demonstrated that the system harvests over 40 mW of power from thermal flow, withstands gamma radiation exceeding 100 Mrad, and survives temperatures up to 195°C. The system, designed to operate stably for fifty years, enables data transmission every ten minutes, ensuring reliable long-term monitoring for nuclear safety and security. Second, the efficiency of thermoelectric generators (TEGs), unique solid-state devices for thermal-to-electrical energy conversion, was explored through a novel manufacturing approach using selective laser melting (SLM) and direct energy deposition (DED). Conventional TEG fabrication methods have limitations in achieving optimal efficiency due to design and material constraints. SLM-based additive manufacturing offers a scalable solution for creating geometry-flexible and functionally graded thermoelectric materials. This research developed a physical model to simulate the SLM and DED process for fabricating Mg2Si thermoelectric materials with Si doping. The model incorporates conservation equations and accounts for fluid flow driven by buoyancy forces and surface tension, enabling detailed analysis of process parameters such as laser scanning speed and power input. The results provided insights into temperature distribution, powder bed shrinkage, and molten pool dynamics, advancing the understanding and optimization of thermoelectric device fabrication using additive manufacturing. One step further, SLM and DED experiments were carried out to validate the simulation results and testify to the feasibility of applying laser powder bed fusion on semiconductor materials. Third, the research investigates the application of laser additive manufacturing to improve performance and reduce the production costs of magnetic materials. Soft magnetic materials, critical for various industrial applications, are fabricated using DED. The research optimizes DED printing parameters and processes through quality control experiments inspired by the Taguchi method and analysis of variance models. The resulting silicon-iron samples exhibit minimal defects and cracks, demonstrating the feasibility of the approach. Detailed optical and scanning electron microscopy, coupled with magnetic characterization, reveal that the rapid cooling process inherent to laser-based AM enables unique microstructures that enhance magnetic properties. Collectively, this work addresses pressing technological challenges in energy harvesting, materials fabrication, and extreme environment monitoring. The developed systems and methodologies have broad implications for nuclear safety, additive manufacturing, and the efficient utilization of advanced materials. By integrating interdisciplinary approaches and leveraging cutting-edge manufacturing technologies, this dissertation contributes to the advancement of sustainable and resilient solutions for modern engineering challenges. / Doctor of Philosophy / This dissertation explores groundbreaking advancements in energy solutions, manufacturing techniques, and nuclear safety, presenting technologies that address challenges in powering sensors, creating efficient energy harvesters, and developing advanced materials. The research spans three main areas, each providing innovative contributions to these critical fields. The first part focuses on a wireless system that powers itself and communicates data from inside sealed nuclear storage containers. These containers, used to store spent nuclear fuel, must be closely monitored for temperature, pressure, radiation, and humidity to ensure safety. However, traditional monitoring methods cannot penetrate the container walls and withstand the extreme conditions inside. This project developed a system combining four key components: a thermal energy harvester, an ultrasound-based communication method, durable electronic circuits, and radiation shielding. The system successfully harvests energy from the container's heat and uses it to power sensors and transmit data wirelessly every ten minutes. It is designed to operate reliably for fifty years, even under intense radiation and high temperatures, providing long-term solutions for nuclear safety monitoring. The second area investigates thermoelectric generators (TEGs), devices that convert heat into electricity. While TEGs have significant potential, traditional manufacturing techniques limit their efficiency and adaptability. By using cutting-edge laser-based additive manufacturing methods—Selective Laser Melting (SLM) and Direct Energy Deposition (DED)—this research developed new ways to create flexible and efficient thermoelectric materials. Advanced simulations were performed to model the manufacturing process, analyzing how factors like laser speed and power affect the final material properties. These models provided valuable insights into optimizing the process, which were then validated through experimental testing. The findings open the door to scalable and efficient production of thermoelectric devices for various energy applications. The third area addresses the fabrication of magnetic materials, essential for many industrial technologies. Traditional methods of creating magnetic materials can be expensive and prone to defects. This research applied laser-based additive manufacturing to produce soft magnetic materials, such as silicon iron, with fewer flaws and improved performance. By optimizing the printing parameters through experiments and statistical analysis, the team created materials with enhanced magnetic properties. Microscopic analysis revealed that the rapid cooling during manufacturing produced unique structures that contribute to the materials' superior qualities. These advancements have the potential to reduce costs and improve the efficiency of magnetic products in various industries. In summary, this dissertation tackles some of the most pressing challenges in energy, manufacturing, and safety technology. By developing systems that can monitor nuclear storage for decades, improving methods to harvest energy from heat, and creating better magnetic materials, this work paves the way for safer and more efficient solutions to modern engineering problems. These innovations are not only critical for nuclear safety but also hold promise for broader applications in sustainable energy and advanced manufacturing, contributing to a safer and more efficient future for industries worldwide.
55

Investigating the Part Programming Process for Wire and Arc Additive Manufacturing

Jonsson Vannucci, Tomas January 2019 (has links)
Wire and Arc Additive Manufacturing is a novel Additive Manufacturing technology. As a result, the process for progressing from a solid model to manufacturing code, i.e. the Part Programming process, is undeveloped. In this report the Part Programming process, unique for Wire and Arc Additive Manufacturing, has been investigated to answer three questions; What is the Part Programming process for Wire and Arc Additive Manufacturing? What are the requirements on the Part Programming process? What software can be used for the Part Programming process? With a systematic review of publications on Wire and Arc Additive Manufacturing and related subjects, the steps of the Part Programming process and its requirements have been clarified. The Part Programming process has been used for evaluation of software solutions, resulting in multiple recommendations for implemented usage. Verification of assumptions, made by the systematic review, has been done by physical experiments to give further credibility to the results.
56

INVESTIGATION OF SHORT FATIGUE CRACK GROWTH AND DAMAGE TOLERANCE IN ADDITIVE MANUFACTURED Ti-6Al-4V

Michael C. Waddell (5930921) 17 January 2019 (has links)
<p>Aeronautical products additively manufactured by Selective Laser Melting (SLM), are known to have fatigue properties which are negatively impacted by porosity defects, microstructural features and residual stresses. Little research is available studying these phenomena with respect to the short fatigue crack growth (FCG) inconsistency problem, the large focus being on the long FCG. This thesis seeks to add useful knowledge to the understanding of the mechanisms for short crack growth variability in SLM manufactured Ti-6Al-4V, with the two variables for the process conditions and build directions investigated. An in-situ FCG investigation using x-ray synchrotron computed micro-tomography (μXSCT) was used to visually observe and quantify the short crack path evolution. Crack growth, deflections and porosity interactions were noted and discussed in relation to microstructure, build layer thickness and build layer orientation. A novel use of in-situ energy dispersive x-ray diffraction (EDD) was able to show the lattice strains evolving as a propagating crack moved through a small region of interest. The results presented show the ability to reliably obtain all six elastic strain tensor components, and interpret useful knowledge from a small region of interest. </p> <p> </p> <p>There are conflicting views in literature with respect to the damage tolerance behavior of as built SLM manufactured Ti-6Al-4V. In the 2018 review by Agius et al., the more prominent studies were considered with Leuders et al. showing the highest long FCG rates for cracks parallel to the build layer and Cain et al. showing cracks propagating through successive build layers as highest [1]–[3]. Cain et al. and Vilaro et al. report significant anisotropy in long FCG for different build orientations whereas Edwards and Ramulu present similar FCG behavior for three different build directions [2]–[5]. Kruth et al. concluded that for optimized build parameters without any (detectable) pores, the building direction does not play a significant role in the fracture toughness results [6]. All of the mentioned literature reported martensitic microstructures and the presence of prior grain structures for as built SLM Ti-6Al-4V.</p> <p> </p> <p>No studies to the authors knowledge have considered the short FCG of SLM manufactured Ti‑6Al‑4V and its implications to the conflicting damage tolerance behaviors reported in literature [1]. In this work small cross-sectional area (1.5 x 1.5 ) samples in two different build conditions of as built SLM Ti-6Al‑4V are studied. The short FCG rate of three different build directions was considered with cracks parallel to the build layers shown to be the most damaging. The microstructure and build layer are shown to be the likely dominant factors in the short FCG rate of as built Ti-6Al-4V. In terms of porosity, little impact to the propagating short crack was seen although there is local elastoplastic behavior around these defects which could cause toughening in the non-optimized build parameter samples tested. The fracture surfaces were examined using a Scanning Electron Microscope (SEM) with the results showing significant differences in the behavior of the two build conditions. From the microindentation hardness testing undertaken, the smooth fracture surface of the optimized sample correlated with a higher Vickers Hardness (VH) result and therefore higher strength. The non-optimized samples had a ‘rough’ fracture surface, a lower VH result and therefore strength. Furthering the knowledge of short FCG in SLM manufactured Ti-6Al-4V will have positive implications to accurately life and therefore certify additive manufactured aeronautical products.</p>
57

3D Printing of Nanoantenna Arrays for Optical Metasurfaces

Jithin Prabha (5930795) 17 January 2019 (has links)
Additive manufacturing using 2 photon polymerization is of great interest as it can create nanostructures with feature sizes much below the diffraction limit. It can be called as true 3D printing as it can fabricate in 3 dimensions by moving the laser spot in any 3D pattern inside the resist. This unique property is attributed to the non-linearity of two photon absorption which makes the polymerization happen only at the focal spot of the laser beam. This method has a wide range of applications such as optics/photonics, metamaterials, metasurfaces, micromachines, microfluidics, tissue engineering and drug delivery.<br>This work focuses on utilizing 2 photon fabrication for creating a metasurface by printing diabolo antenna arrays on a glass substrate and subsequently metallizing it by coating with gold. A femtosecond laser is used along with a galvo-mirror to scan the geometry inside the photoresist to create the antenna. The structure is simulated using ANSYS HFSS to study its properties and optimize the parameters. The calculations show a reflectance dip and zero reflectance for the resonance condition of 4.04 μm. An array of antennas is fabricated using the optimized properties and coated with gold using e-beam evaporation. This array is studied using a fourier transform infrared spectrometer and polarization dependent reflectance dip to 40% is observed at 6.6 μm. The difference might be due to the small errors in fabrication. This method of 3D printing of antenna arrays and metallization by a single step of e-beam evaporation is hence proved as a viable method for creating optical metasurfaces. Areas of future research for perfecting this method include incorporating an autofocusing system, printing more complicated geometries for antennas, and achieving higher resolution using techniques like stimulated emission depletion.
58

Characterisation of integrated WAAM and machining processes

Adebayo, Adeyinka January 2013 (has links)
This research describes the process of manufacturing and machining of wire and arc additive manufactured (WAAM) thin wall structures on integrated and non¬integrated WAAM systems. The overall aim of this thesis is to obtain a better understanding of deposition and machining of WAAM wall parts through an integrated system. This research includes the study of the comparison of deposition of WAAM wall structures on different WAAM platforms, namely an Integrated SAM Edgetek grinding machine, an ABB robot and a Friction Stir Welding (FSW) machine. The result shows that WAAM is a robustly transferable technique that can be implemented across a variety of different platforms typically available in industry. For WAAM deposition, a rise in output repeatedly involves high welding travel speed that usually leads to an undesired humping effect. As part of the objectives of this thesis was to study the travel speed limit for humping. The findings from this research show that the travel speed limit falls within a certain region at which humping starts to occur. One of the objectives of this thesis was to study the effect of lubricants during sequential and non-sequential machining/deposition of the WAAM parts. Conventional fluid lubricants and solid lubricants were used. In addition, the effect of cleaning of deposited wall samples with acetone was also studied. A systematic study shows that a significant amount of solid lubricant contamination can be found in the deposited material. Furthermore, the results indicate that even cleaning of the wire and arc additive manufactured surfaces with acetone prior to the weld deposition can affect the microstructure of the deposited material.
59

The Impact of Medical Devices Regulations on Notified Bodies and Additive Manufacturing

Qi, Jianing, Wei, Shilun January 2020 (has links)
The medical device regulatory system, as well as the medical device market in the European Union (EU), is now facing challenges posed by the newest regulation, Medical device regulations (MDR). Researches have shown concerns and possible consequences related to this new regulation system from both the regulatory approval procedure and market development perspectives. This study aims to elaborate on a practical and objective situation of this latest shift and picture out a predictable scenario for the implementation of future technology like Additive Manufacturing (AM) in healthcare. These two objectives are addressed from the perspective of the core role in this system, Notified Bodies (NBs). Specifically, it answers the following questions: What is the impact of the MDR on the NBs’ operations? What is the impact of the MDR on the device building on AM from NBs’ perspective? A literature review is conducted on existing researches in the relevant fields mentioned in the research questions of this study. Then a self-completion questionnaire is generated and sent to NBs who offer the CE marking granting service for the medical devices around the EU. The eight responses for the survey indicate that the MDR influences NBs and the device building on AM from several perspectives. For the NBs, the number of NBs will decrease while the workload and new recruitment will increase. Also, the independence and competences of NBs will be improved by MDR. In the case of AM-relevant medical devices, MDR will pose specific issues on them while the market will be developed by ensuring the product quality and raising public awareness. These findings are valuable practical evidence to examine the application of MDR and the implementation of technology like AM in healthcare under MDR. Overall, it found that the MDR will cause a tough situation in the short term. At the same time, the far-reaching influence for the regulatory system, as well as the medical device market, is affirmative and expectable worthy.
60

MICROSTRUCTURE DEVELOPMENT IN MULTI-PASS LASER MELTING OF AISI 8620 STEEL

Matthew L Binkley (9182462) 29 July 2020 (has links)
<p>An existing thermal model for laser melting and additive manufacturing (AM) was expanded to include phase transformation and hardness predictions for an alloy steel and coupled to experimental results. The study was performed on AISI 8620, a popular case-hardening, steel to understand microstructural and property effects for potential repair applications. The experimental samples were polished, etched with nital and picral for comparison, imaged, and Vicker’s microhardness was taken at 0.5 and 0.2 kg loads. The etched images revealed a transformation zone slightly larger than the melt zone in all cases including a gradient in transformation along the outer edges of the transformation zones. The microhardness measurements revealed that the lower energy cases provided a higher hardness in the melted region even after tempering due to multiple passes. But the overall hardness was higher than what is to be expected of a fully martensitic structure in AISI 8620. The phase transformation model qualitatively shows a similar microstructure where molten regions turn completely to martensite. The model also predicts a transformation zone larger than the melt pool size, as well as the transformation of pearlite but not ferrite near but not in melt pool. This observation is experimentally verified showing a heat affected zone where pearlite is clearly transformed but not ferrite outside the transformation zone comprised of complete martensite. The hardness model predicts a lower hardness than the experiments but is similar to what is expected based on published Jominy End Quench tests. The cases in the regime dominated by conductive heat transfer show good agreement with the predictions of melt pool shape and hardness by the thermal model. However, at higher powers and lower speeds, the fluid flow influenced the shape of the melt pool and the hat transfer in its vicinity, and the model was less accurate.</p>

Page generated in 0.0803 seconds