• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Efeitos da  adição do NiO na densificação, na  microestrutura e na condutividade elétrica da zircônia totalmente estabilizada com ítría / Effects of NiO addition on the densification, microstructure and electrical conductivity of yttria fully-stabilized zirconia

Batista, Rafael Morgado 24 February 2010 (has links)
Os efeitos decorrentes da adição de NiO na densificação, na microestrutura e na condutividade elétrica da zircônia totalmente estabilizada com ítria foram sistematicamente estudados. Zircônia-8% mol de ítria (8YSZ) comercial e acetato, trihidróxi-carbonato, nitrato e óxido de níquel foram utilizados como materiais de partida. Os teores de Ni variaram entre 0,5% e 5% em mol e as composições foram preparadas por mistura dos materiais precursores a partir das concentrações estequiométricas. Estudos de densificação realizados por meio de medidas de densidade geométrica e dilatometria revelaram que a retração total até 1400ºC varia de ~16 até ~20% dependendo do precursor de níquel. No segundo estágio de sinterização a retração linear aumentou com o aumento no teor do aditivo (precursor: trihidróxi-carbonato de níquel). No estágio inicial de sinterização a energia de ativação para a difusão via contornos de grão varia de acordo com o precursor de níquel utilizado sendo menor para o óxido e maior para o trihidróxi-carbonato. No estágio secundário de sinterização prevalece a sinterização volumétrica. Neste estágio, as temperaturas de máxima retração são independentes do precursor de níquel, exceto para o acetato. O tamanho médio de cristalito variou com o tipo de precursor empregado sendo menor para o trihidróxi-carbonato e maior para o óxido de níquel. O limite de solubilidade do NiO determinado por difração de raios X é 1,48% em mol a 1350ºC. Para teores acima do limite de solubilidade o aditivo permanece aleatoriamente distribuído como uma fase secundária na forma de NiO. O principal efeito do aditivo na microestrutura é aumentar o tamanho médio de grãos. Os resultados de medidas elétricas revelaram que a adição de NiO não produz alterações significativas na condutividade intragranular da 8YSZ para diversos tempos de sinterização, exceto quando o precursor é o óxido de níquel, para o qual a condutividade elétrica aumenta com o tempo de sinterização evidenciando a dificuldade na formação de solução sólida, quando o material precursor possui tamanho de cristalito superior ao da matriz. Entretanto, a condutividade intragranular nas amostras preparadas com o trihidróxi-carbonato de nickel é pouco inferior à das demais amostras. Nas amostras sinterizadas por 15 h a 1350ºC um terceiro semicírculo foi associado com a formação de fase tetragonal na 8YSZ, devido à aceleração pelo níquel na cinética da transformação de fase cúbica para tetragonal. A condutividade intergranular varia com o tempo de sinterização devido à diminuição na fração de interfaces (contornos de grão) que ocorre com o aumento no tamanho médio de grãos. A condutividade intergranular microscópica da 8YSZ não varia significativamente com a adição de NiO. / The effects produced by NiO addition to yttria fully-stabilized zirconia were systematically investigated. Commercial zirconia-8 mol% yttria, nickel acetate, nitrate, trihydroxicarbonate and nickel oxide were used as starting materials. The NiO content varied from 0.5 to 5 mol%, and the compositions were prepared by mechanically mixing the starting materials in the stoichiometric proportions. Densification studies carried out by density and dilatometry measurements revealed that the maximum shrinkage (~16-~20%) depends on the type of nickel precursor. In the second sintering stage the linear shrinkage increased with increasing NiO content (precursor: nickel trihydroxi-carbonate). In the first sintering stage, the activation energy for grain boundary diffusion changed according to the additive precursor, being lower for the oxide and higher for the trihydroxi-carbonate. In the second stage, when the major part of porosity is eliminated, the maximum shrinkage rate temperatures were found to be independent on the precursor except when nickel acetate is used. The solubility limit at 1350ºC is 1.48% as determined by X-ray diffraction. Above the solubility limit the excess NiO is retained as a second randomly distributed phase. The main effect of the additive in the ceramic microstructure is to increase the average grain size. The electrical measurements showed that the additive did not produce any significant effect in the grain conductivity irrespective of the sintering time, except when the precursor material was nickel oxide. In this case, the grain conductivity increased with increasing sintering time. This effect is attributed to the crystallite size of the nickel oxide precursor, which is higher than that of 8YSZ, slowing down the formation of solid solution. However, the grain conductivity of samples prepared with nickel trihydroxi-carbonate precursor is slightly lower than those of other samples. The samples sintered for 15 h exhibited an additional semicircle in the impedance diagram, which is assigned to the tetragonal phase of zirconia-yttria, resulting from thermal decomposition of the cubic structure. Hence, NiO additive accelerates the kinetics of cubic-to-tetragonal phase transformation in 8YSZ. The grain boundary conductivity depends on the sintering time due to reduction of the fraction of interfaces as a consequence of grain growth. The microscopic grain boundary conductivity of 8YSZ does not vary with NiO addition.
2

Efeitos da  adição do NiO na densificação, na  microestrutura e na condutividade elétrica da zircônia totalmente estabilizada com ítría / Effects of NiO addition on the densification, microstructure and electrical conductivity of yttria fully-stabilized zirconia

Rafael Morgado Batista 24 February 2010 (has links)
Os efeitos decorrentes da adição de NiO na densificação, na microestrutura e na condutividade elétrica da zircônia totalmente estabilizada com ítria foram sistematicamente estudados. Zircônia-8% mol de ítria (8YSZ) comercial e acetato, trihidróxi-carbonato, nitrato e óxido de níquel foram utilizados como materiais de partida. Os teores de Ni variaram entre 0,5% e 5% em mol e as composições foram preparadas por mistura dos materiais precursores a partir das concentrações estequiométricas. Estudos de densificação realizados por meio de medidas de densidade geométrica e dilatometria revelaram que a retração total até 1400ºC varia de ~16 até ~20% dependendo do precursor de níquel. No segundo estágio de sinterização a retração linear aumentou com o aumento no teor do aditivo (precursor: trihidróxi-carbonato de níquel). No estágio inicial de sinterização a energia de ativação para a difusão via contornos de grão varia de acordo com o precursor de níquel utilizado sendo menor para o óxido e maior para o trihidróxi-carbonato. No estágio secundário de sinterização prevalece a sinterização volumétrica. Neste estágio, as temperaturas de máxima retração são independentes do precursor de níquel, exceto para o acetato. O tamanho médio de cristalito variou com o tipo de precursor empregado sendo menor para o trihidróxi-carbonato e maior para o óxido de níquel. O limite de solubilidade do NiO determinado por difração de raios X é 1,48% em mol a 1350ºC. Para teores acima do limite de solubilidade o aditivo permanece aleatoriamente distribuído como uma fase secundária na forma de NiO. O principal efeito do aditivo na microestrutura é aumentar o tamanho médio de grãos. Os resultados de medidas elétricas revelaram que a adição de NiO não produz alterações significativas na condutividade intragranular da 8YSZ para diversos tempos de sinterização, exceto quando o precursor é o óxido de níquel, para o qual a condutividade elétrica aumenta com o tempo de sinterização evidenciando a dificuldade na formação de solução sólida, quando o material precursor possui tamanho de cristalito superior ao da matriz. Entretanto, a condutividade intragranular nas amostras preparadas com o trihidróxi-carbonato de nickel é pouco inferior à das demais amostras. Nas amostras sinterizadas por 15 h a 1350ºC um terceiro semicírculo foi associado com a formação de fase tetragonal na 8YSZ, devido à aceleração pelo níquel na cinética da transformação de fase cúbica para tetragonal. A condutividade intergranular varia com o tempo de sinterização devido à diminuição na fração de interfaces (contornos de grão) que ocorre com o aumento no tamanho médio de grãos. A condutividade intergranular microscópica da 8YSZ não varia significativamente com a adição de NiO. / The effects produced by NiO addition to yttria fully-stabilized zirconia were systematically investigated. Commercial zirconia-8 mol% yttria, nickel acetate, nitrate, trihydroxicarbonate and nickel oxide were used as starting materials. The NiO content varied from 0.5 to 5 mol%, and the compositions were prepared by mechanically mixing the starting materials in the stoichiometric proportions. Densification studies carried out by density and dilatometry measurements revealed that the maximum shrinkage (~16-~20%) depends on the type of nickel precursor. In the second sintering stage the linear shrinkage increased with increasing NiO content (precursor: nickel trihydroxi-carbonate). In the first sintering stage, the activation energy for grain boundary diffusion changed according to the additive precursor, being lower for the oxide and higher for the trihydroxi-carbonate. In the second stage, when the major part of porosity is eliminated, the maximum shrinkage rate temperatures were found to be independent on the precursor except when nickel acetate is used. The solubility limit at 1350ºC is 1.48% as determined by X-ray diffraction. Above the solubility limit the excess NiO is retained as a second randomly distributed phase. The main effect of the additive in the ceramic microstructure is to increase the average grain size. The electrical measurements showed that the additive did not produce any significant effect in the grain conductivity irrespective of the sintering time, except when the precursor material was nickel oxide. In this case, the grain conductivity increased with increasing sintering time. This effect is attributed to the crystallite size of the nickel oxide precursor, which is higher than that of 8YSZ, slowing down the formation of solid solution. However, the grain conductivity of samples prepared with nickel trihydroxi-carbonate precursor is slightly lower than those of other samples. The samples sintered for 15 h exhibited an additional semicircle in the impedance diagram, which is assigned to the tetragonal phase of zirconia-yttria, resulting from thermal decomposition of the cubic structure. Hence, NiO additive accelerates the kinetics of cubic-to-tetragonal phase transformation in 8YSZ. The grain boundary conductivity depends on the sintering time due to reduction of the fraction of interfaces as a consequence of grain growth. The microscopic grain boundary conductivity of 8YSZ does not vary with NiO addition.
3

Obtenção e caracterização estrutural, microestrutural e elétrica do condutor protônico BaCe1-xYxO3-δ com e sem aditivo de sinterização / Protonic conductor BaCe1-xYxO3-δ with and without sintering aid : synthesis and structural, microstructural and electrical characterization

Pires, Elcio Liberato 19 December 2016 (has links)
Submitted by Aelson Maciera (aelsoncm@terra.com.br) on 2017-06-05T20:20:51Z No. of bitstreams: 1 TeseELP.pdf: 16549429 bytes, checksum: 8564c0e7a4dbc3f95cb21b3270edf754 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-06-06T18:43:55Z (GMT) No. of bitstreams: 1 TeseELP.pdf: 16549429 bytes, checksum: 8564c0e7a4dbc3f95cb21b3270edf754 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-06-06T18:44:56Z (GMT) No. of bitstreams: 1 TeseELP.pdf: 16549429 bytes, checksum: 8564c0e7a4dbc3f95cb21b3270edf754 (MD5) / Made available in DSpace on 2017-06-08T19:45:20Z (GMT). No. of bitstreams: 1 TeseELP.pdf: 16549429 bytes, checksum: 8564c0e7a4dbc3f95cb21b3270edf754 (MD5) Previous issue date: 2016-12-19 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / The study of solid electrolytes (SE) is important to the scientific and technological development of materials used in application related to clean energy generation, such as Solid Oxide Fuel Cells (SOFCs). Yttrium-doped Barium Cerate is a SE with perovskite structure and great potential for this application because of its high values of protonic conductivity in temperatures between 350 and 600°C, which would allow the replacement of the currently used Zirconia based SE that operate above 800 °C, reducing the manufacturing cost of SOFCs. In the present work, eighteen compositions of BaCe1-xYxO3-δ system with x ranging from 0 to 0.2 were synthesized via modified citrate process and for half of the compositions an addition of 1 wt% ZnO as sintering aid was made. With the goal of establishing a correlation between structure, microstructure and electrical conductivity with the yttrium concentration and in the presence or absence of the sintering aid, all compositions were characterized with X-ray Powder Diffraction, Raman Spectroscopy, Scanning and Transmission Electron Microscopy (TEM), Energy-dispersive X-ray Spectroscopy (EDS) and Impedance Spectroscopy. Secondary phases were characterized using TEM, EDS and Electron Diffraction. All samples presented relative bulk density values above 95%. The bulk electrical conductivity is proportional to the yttrium concentration in the grain and, in general, the ZnO addition promoted grain growth, increasing its average size up to five times in some compositions. The ZnO acts mainly at the grain boundary region and it is effective as sintering aid only when the composition has some yttrium content. Among all synthesized compositions, BaCe0.8Y0.2O3-δ without ZnO addition showed the highest electrical conductivity value at 600°C (≈ 31.5 mS/cm). In the group of samples with ZnO, the highest values (close to 18.4 mS/cm), were obtained for compositions with Yttrium content above 14 at.%. / O estudo de eletrólitos sólidos (ES) é importante para o desenvolvimento científico e técnológico de materiais para aplicações relacionadas à geração de energia limpa, como por exemplo, células a combustível de óxido sólido (CaCOS). O cerato de bário dopado com ítrio é um ES com estrutura perovskita com grande potencial de aplicação por apresentar valores altos de condutividade protônica em temperatura entre 350 e 600 °C, o que possibilitaria substituir os atuais ES à base de Zircônia que operam acima de 800 °C, reduzindo o custo de fabricação das CaCOS. Neste trabalho, dezoito composições do sistema BaCe1-xYxO3-δ com x variando entre 0 e 0,2 foram sintetizadas via processo citrato modificado e para metade das composições, uma adição de 1% em massa de ZnO como aditivo de sinterização foi feita. Visando estabelecer uma correlação entre estrutura, microestrura e condutividade elétrica com a concentração de ítrio e a presença ou não de aditivo de sinterização, todas as composições foram caracterizadas por meio de difração de raios X, espectroscopia Raman, microscopia eletrônica de varredura e transmissão (MET), espectroscopia de raios X por dispersão em energia (EDS) e espectroscopia de impedância. Fases secundárias foram caracterizadas por MET, EDS e difração de elétrons. Todas as composições apresentaram valores de densidade relativa acima de 95%. A condutividade elétrica do grão é proporcional a concentração de ítrio na matriz e, no geral, a adição de ZnO favoreceu o crescimento de grão, aumentando o seu tamanho médio em até cinco vezes. O ZnO atua principalmente na região de contorno de grão e é eficiente como aditivo apenas na presença ítrio. Dentre as composições sintetizadas, a BaCe0,8Y0,2O3-δ sem ZnO apresentou o maior valor de condutividade a 600°C (≈ 31,5 mS/cm). No grupo das amostras com ZnO, os valores mais altos, próximos a 18,4 mS/cm, foram obtidos para composições com teor de Y acima de 14% at. / CNPq: 207073/2014-7 / CNPq: 160534/2012-7

Page generated in 0.2799 seconds