Spelling suggestions: "subject:"aerobic digestion"" "subject:"eerobic digestion""
1 |
Increased Anaerobic Digestion Efficiency via the Use of Thermal HydrolysisFraser, Kino Dwayne 12 August 2010 (has links)
Waste sludge is frequently treated by anaerobic digestion to kill pathogens, generate methane gas and reduce odors so the sludge can be safely land applied. In an attempt to reduce sludge volumes and improve sludge dewatering properties, the use of thermal hydrolysis (TH), a sludge pretreatment method, has been adopted by numerous wastewater treatment plants, among them being the District of Columbia Water and Sewage Authority (DC WASA).
The use of anaerobic digestion in collaboration with thermal hydrolysis has been shown to increase VS removal, COD removal and biogas production. The sludge generated also dewaters to a higher cake solids than from conventional anaerobic digestion. Unfortunately, DC WASA has found that the use of thermal hydrolysis had brought about two major issues. These are: (a) does thermal hydrolysis increase destruction of fats, oils and greases compared to conventional digestion? and (b) is the mixing method used at Virginia Tech (recirculating gas mixing) capable of stripping ammonia from the digester? Therefore the main purpose of this study is to evaluate these issues which occur with the use of the thermal hydrolysis process.
Experiments were conducted in two phases. The first phase was to assess the performance of anaerobic digesters via their biogas production with and without long chain fatty acid addition
and with or without thermal hydrolysis. This research was further carried out in two stages. First a mixture of unsaturated long chain fatty acids (hydrolyzed and unhydrolyzed) was used. The fatty acid mixture included oleic, linoleic and linolenic acids, which contain one, two and three double bonds, respectively.
In the second stage, the effect of a single unsaturated fatty acid (hydrolyzed and unhydrolyzed) was analyzed. If extra gas is generated, grease addition to the digesters will be implemented. If thermal hydrolysis produces more gas, the greases will be added through the thermal hydrolysis unit rather than being added directly to the digester. The results showed that addition of long chain fatty acids greatly increased gas production and the long chain fatty acids that were thermally hydrolyzed generated more gas than the untreated long chain fatty acids, although the gain was not large.
The second phase of the study was carried out by alternating the type of recirculating gas mixing (partial and continuous) in the anaerobic bioreactor. To achieve this goal, short-term anaerobic bioreactor studies were conducted by varying the frequency of the gas. The result showed that continuous gas recirculation at the bottom of the digester was responsible for stripping ammonia from the system. It appeared that up to 500 mg/L of ammonia was being stripped from the digester operating at 20 day solids retention time. This suggests that ammonia can be stripped if a reduction of ammonia in the digester was desired. / Master of Science
|
2 |
Anaerobic / Aerobic Digestion for Enhanced Solids and Nitrogen RemovalBanjade, Sarita 22 January 2009 (has links)
Anaerobic digestion of wastewater sludge has widely been in application for stabilization of sludge. With the increase in hauling cost and many environmental and health concerns regarding land application of biosolids, digestion processes generating minimized sludge with better effluent characteristics is becoming important for many public and wastewater utilities.
This study was designed to investigate the performance of anaerobic-aerobic-anaerobic digestion of sludge and compare it to anaerobic-aerobic digestion and single stage mesophilic digestion of sludge. Experiments were carried out in three stages: Single-stage mesophilic anaerobic digestion (MAD) 20d SRT; Sequential Anaerobic/Aerobic digestion (Ana/Aer); and Anaerobic/Aerobic/Anaerobic digestion (An/Aer/An). The Anaerobic/Aerobic/Anaerobic digestion of sludge was studied with two options to determine the best option in terms of effluent characteristics. The two sludge withdrawal options were to withdraw effluent from the anaerobic digester (An/Aer/An – A) or withdraw effluent from the aerobic digester (An/Aer/An – B). Different operational parameters, such as COD removal, VS destruction, biogas production, Nitrogen removal, odor removal and dewatering properties of the resulting biosolids were studied and the results were compared among different processes.
From the study, it was found that An/Aer/An – B (wastage from aerobic reactor) provided better effluent characteristics than An/Aer/An – A (wastage from anaerobic reactor), Ana/Aer or conventional MAD. The study also shows that the Anaerobic/Aerobic/Anaerobic (An/Aer/An, with wastage from the aerobic or anaerobic digester) digestion of the sludge can improve the biosolids quality by improving the dewatering capabilities, with lower optimum polymer dose, reduced CST and increased cake solid concentration, and reduce the odor generation from the biosolids.
Both An/Aer/Ana – A and An/Aer/An – B gave 70% VS removal, compared to 50% with single MAD and 62% with only Ana/Aer. COD removal of both An/Aer/An – A and An/Aer/An – B was 70%, while it was 50% and 66% for single MAD and Ana/Aer respectively. In the aerobic reactors of Ana/Aer and An/Aer/An - B, nitrification and denitrification with removal of nitrogen was observed. The An/Aer/An – B system had more ammonia and TKN removal (70%) than Ana/Aer (64%).
The effluent from each stage was analyzed for dewatering ability, cake solid concentration and odor production potential. Compared with a single Ana/Aer system, the extra anaerobic step in An/Aer/An – A and – B reduced polysaccharides in the effluent. The Ana/Aer system released less protein than the conventional MAD system and the addition of the second anaerobic step - especially with system An/Aer/An – B (discharge from aerobic reactor) - greatly reduced protein, resulting in improved dewaterability and less polymer demand. An/Aer/An (both of the options: A and B) had lower CST than single MAD (both 15d and 20d SRT) and Ana/Aer. Compared to Ana/Aer, a reduction of 52% for An/Aer/An – A and 20% for An/Aer/An – B in polymer dose requirement was observed, indicating improved dewatering characteristics. The An/Aer/An – B has higher biosolid cake concentration than MAD or Ana/Aer. The results showed that An/Aer/An (both options: A and B) biosolid had lower odor generation potential than single MAD (15d and 20d SRT) or Ana/Aer. Of all the stages,the An/Aer/An – A and – B system, generated odor which peaked at shorter time and lasted for shorter duration of time. / Master of Science
|
3 |
Biopolymer and Cation Release in Aerobic and Anaerobic Digestion and the Consequent Impact on Sludge Dewatering and Conditioning PropertiesRust, Mary Elizabeth 07 September 1998 (has links)
Sludge dewatering and chemical conditioning requirements were examined from the perspective of biopolymer and cation release from activated sludge flocs. Both aerobic and anaerobic digestion processes were considered from two different activated sludge sources at a temperature of 20° C. Polymer demand and specific resistance to filtration increased with an increase in total soluble biopolymer concentration for all temperature ranges. In anaerobic digestion, the protein release was three times greater than the polysaccharide release. Conversely, aerobic digestion of the same sludge resulted in a greater release of polysaccharides than proteins. Polymer conditioning requirements in the anaerobic digestors were an order of magnitude higher than in the aerobic digestors; proteins were considered to be the biopolymer fraction responsible for the high polymer conditioning requirements and poor dewatering properties. Biopolymer is released to the supernatant as colloids bound by divalent cations. Peptidase and glucosidase activity were used to monitor enzymatic activity relative to biopolymer release and degradation. The reasons for the increases and decreases in hydrolase activity are unknown. / Master of Science
|
4 |
Sequential Anaerobic-Aerobic Digestion: A new process technology for biosolids product quality improvementKumar, Nitin 11 May 2006 (has links)
Anaerobic digestion is widely used for stabilization of solids in sewage sludges. Recent changes in the priorities and goals of digestion processes are focusing more attention on the efficiency of these processes. Increasing hauling cost and restrictions for land applications are two factors which are driving the increased attention to digestion efficiency. Noxious odor production from the land applied biosolids is another important issue related to digestion efficiency. Existing anaerobic digestion or aerobic digestion processes failed to provide simultaneous solution to biosolids related problems i.e. simultaneous VS reduction, better dewatering of biosolids and lesser odors from the biosolids.
Studies done by Novak et al. (2004) using different activated sludges show that anaerobic-aerobic digestion and aerobic-anaerobic digestion both increase volatile solids reduction compared to a single digestion environment. They proposed that there are 4 VS fractions in sludges: (1) a fraction degradable only under aerobic conditions, (2) a fraction degradable only under anaerobic conditions, (3) a fraction degradable under both anaerobic and aerobic conditions, and (4) a non degradable fraction. It has also been found (Akunna et al., 1993) that anaerobic-aerobic sequential treatment of wastewater can help in achieving substantial nitrogen removal. These results suggest that sequential anaerobic-aerobic digestion can address multiple biosolid related problems.
This study was designed to understand the effect of sequential anaerobic-aerobic digestion on the properties of resulting effluent biosolids. The study was carried out in two operation phases and during both phases one digester was maintained at thermophilic conditions and the other at mesophilic temperature conditions. In first operation phase (Phase-I) thermophilic digester was operating at 20 day SRT and mesophilic anaerobic digester was at 10 day SRT. The aerobic digesters following anaerobic digesters were operating at 6 day SRT. In second operation phase (Phase-II), both thermophilic and mesophilic anaerobic digesters were operating at 15 day SRT and both had two aerobic digesters operating in parallel at 3 day and 6 day SRTs.
In addition, batch experiments were also conducted to measure the performance of aerobic-anaerobic digestion sequence. Another study was carried out to understand the nitrogen removal mechanism during aerobic digestion of anaerobic digested sludge. The feed sludge was spiked with four different concentrations of nitrate and nitrite.
It was observed during the study that aerobic digestion of anaerobic sludge helps in achieving higher Volatile solid reduction (~65% vs ~ 46% for mesophilic digestion and ~52% for thermophilic digestion). This result supports the hypothesis concerning the different fractions in volatile solids. Experimental results also show that the increase in VSR upon increasing anaerobic digestion SRT (more than 15 days) is less than the increase in the VSR due to the same increment of aerobic digestion SRT. Reduction in COD and VFA were also measured to be more than 50% during aerobic digestion.
Investigation of nitrogen fate during the sequential anaerobic-aerobic digestion show more than 50% total nitrogen removal. Higher nitrogen removal was in thermophilic anaerobic – aerobic digester combination than that in mesophilic anaerobic–aerobic combination. The most probable reason for the removal was simultaneous nitrification and denitrification. Higher concentration of readily available VFA from thermophilic anaerobic digested sludge provide advantage in denitrification in following aerobic digester.
The resulting biosolids produced during sequential digestion process were also analyzed for dewatering properties and odor production. Proteins and polysaccharides concentrations were observed to decrease during aerobic digestion for thermophilic anaerobic - aerobic digestion combination, while in another combinations polysaccharide concentrations increases at aerobic phase with 3 day digestion. The concentration of polysaccharides decreases at higher digestion period of 6 and 9. The result of decrease in polysaccharide and protein was reflected by the reduction in the polymer dose consumption and decrease in the optimum CST for the biosolids resulting from the sequential anaerobic aerobic digestion.
Experimental results from odor experiments show that odor production potential of the biosolids decreases with increase in both anaerobic phase SRT and aerobic phase SRT. Thermophilic biosolids produces comparatively low odors but for longer periods, while mesophilic biosolids produces higher magnitude of odors during storage but only for comparative shorter period. Aerobic digestion of anaerobic sludge helps in reducing more than 50% odor production, but freeze-thaw cycle experiment shows that in both anaerobic and sequential anaerobic – aerobic digested sludges have higher potential for odor production. Higher aerobic digestion SRTs (6 days and above) shows more potential of reducing odors, but more experimental work is required to be done. / Master of Science
|
5 |
Fate Of Nonylphenol Compounds In Aerobic Batch ReactorsOmeroglu, Secil 01 May 2012 (has links) (PDF)
Today, numerous studies indicate the presence of synthetic organics such as nonylphenol (NP) compounds in wastewater. NP compounds are a group of chemicals including nonylphenol, nonylphenol polyethoxylates (NPnEO) and nonylphenoxy polyethoxy acetic acids (NPnEC). Since NP compounds have significant industrial, commercial and domestic use, they enter environmental systems and reach human beings from various pathways. Their presence is of concern because they are toxic, carcinogenic and endocrine disrupting due to their ability to mimic oestrogen hormone.
The information available on the degradation of NPnEOs, is such that degradation starts with the reduction of ethylene oxide units, resulting in the formation of
nonylphenol, nonylphenol mono- or diethoxylate (NP1EO and NP2EO) and nonylphenoxy acetic acid (NP1EC). Although their fate during wastewater treatment was investigated in the past, not many research investigating their fate in sludge treatment can be found. Therefore, the objective of this study is first to come up with reliable extraction and measurement methods for NP compounds and then to investigate the fate of NP2EO in aerobic digesters.
After the development of techniques for the extraction and measurement of NP compounds, aerobic reactors spiked with NP2EO were operated. The samples were analyzed for solids content, COD, pH and NP compounds. The results showed that NP2EO degrades rapidly under aerobic conditions. As time proceeded, NP1EC formation was observed with the degradation of NP2EO, and NP1EC became the dominant specie. The solids concentration measurements showed that concentration of NP compounds did not affect the efficiency of aerobic digesters.
|
6 |
Anaerobic and Combined Anaerobic/Aerobic Digestion of Thermally Hydrolyzed SludgeTanneru, Charan Tej 07 December 2009 (has links)
Sludge digestion has gained importance in recent year because of increasing interest in energy recovery and public concern over the safety of land applied biosolids. Many new alternatives are being researched for reducing excess sludge production and for more energy production. With an increase in solids destruction, the nutrients that are contained in sludge especially nitrogen, are released to solution and can be recycled as part of filtrate or centrate stream.
Nitrogen has gained importance because it has adverse effects on ecosystem's as well as human health. NH₄⁺, NO₂⁻, NO₃⁻-, and organic nitrogen are the different forms of nitrogen found in wastewater. While ammonia is toxic to aquatic life, any form of nitrogen can be utilized by cyanobacteria and result in eutrophication. NO₂/NO₃, if consumed by infants through water, can affect the oxygen uptake capability. Hence, removal of nitrogen from wastewater stream before discharging is important.
The main purpose of this study was to evaluate the performance of the Cambi process, a thermophylic hydrolysis process used as a pre-treatment step prior to anaerobic digestion. Thermal hydrolysis, as a pre-treatment to anaerobic digestion increases the biological degradation of organic volatile solids and biogas production. The thermal hydrolysis process destroys pathogens and hydrolysis makes the sludge readily available for digestion, while at the same time facilitating a higher degree of separation of solid and liquid phases after digestion.
Experiments were conducted in three phases for anaerobic digestion using the Cambi process as pre-treatment. The phases of study includes comparison of two temperatures for thermal hydrolysis (Cambi 150°C and Cambi 170°C), comparison of two solid retention times in anaerobic digestion (15 Day and 20 Day) and comparison of two mesophilic temperatures in anaerobic digestion (37°C and 42°C). Different experimental analyses were conducted for each phase, such as pH, bio-gas production, COD removal, VS destruction, nitrogen removal, odor and dewatering characteristics and the results are compared among all the phases.
The second part of the study deals with aerobic digestion of anaerobically digested sludge for effective nitrogen removal and additional VS destruction, COD removal. An aerobic digester is operated downstream to anaerobic digester and is operated with aerobic/anoxic phase for nitrification and de-nitrification. The aerobic/anoxic phases are operated in time cycles which included 40minutes/20minutes, 20minutes/20minutes, full aeration, 10minutes/30minutes, and 12minutes/12minutes. Different time cycles are experimented and aerobic digester is optimized for effective nitrogen removal. 12minutes aerobic and 12minutes anoxic phase gave better nitrogen removal compared to all the cycles. Over all the aerobic digester gave about 92% ammonia removal, 70% VS destruction and 70% COD removal. The oxygen uptake rates (OUR's) in the aerobic digester are measured corresponding to maximum nitrogen removal. The OUR's are found to be close to 60 mg/L during maximum nitrogen removal. The effluent from both anaerobic digester and aerobic digester was collected and analyzed for dewatering capability, cake solids concentration and odor potential. / Master of Science
|
7 |
Conditioning and Dewatering Behavior of ATAD SludgesAgarwal, Saurabh 16 March 2004 (has links)
Autothermal thermophilic aerobic digestion (ATAD) of sludge has been used to produce class A biosolids. With stringent EPA guidelines, more and more municipalities are looking to use this process for digestion of sludge. However the large polymer costs associated with dewatering these sludges has made the use of this technology unfavorable. Several studies have been conducted in the past which have looked into the mechanism leading to such a poor dewatering of sludge. Some of these studies have attributed the release of protein and polysaccharide during the high temperature digestion to be responsible for the poor dewatering. However the exact mechanism leading to the poor dewatering is still not totally clear. Laboratory scale studies were conducted to evaluate the mechanism leading to the poor dewatering of these sludges and also to be able to economically condition these sludges. ATAD sludge samples were collected from ATAD processing facilities in Ephrata, PA, Cranberry, PA, Titusville, FL and College Station, TX. The research included experiments evaluating the protein and polysaccharide concentrations in solution, cations and anions, iron and aluminum, zeta potential and capillary suction time. It was found that during digestion large amounts of protein and polysaccharide were released which were in the colloidal range, and the dewatering of each of these sludges became poorer as the amount of protein and polysaccharide in the solution increased. The release of protein and polysaccharide was related to the monovalent to divalent cation ratio and the iron and aluminum concentration in the sludge. Also during the digestion process, the pH of the sludge increased appreciably and the divalent cations precipitated out. The zeta potential of the ATAD digested sludge was also found to be positive. Different chemical coagulants were used to condition the sludge, but even with high polymer doses the dewatering of the sludge was not satisfactory. A combination of iron (or cationic polymer) followed by anionic polymer was found to improve the dewatering to a desired level. The use of this combination of sludge conditioning also provides an economical solution to the problem of dewatering. The role of iron in improving the dewatering of the sludges was found to be important, with the sludge dewatering being better for sludges with a high iron content. The combination of high pH, divalent cation precipitation, iron deficiency and biopolymer release all contribute to the poor dewatering of ATAD sludge. / Master of Science
|
8 |
Performance and Mechanisms of Excess Sludge Reduction in the Cannibal™ ProcessChon, Dong Hyun 08 April 2005 (has links)
In order to study the performance and mechanisms of excess sludge reduction in the activated sludge that incorporates the Cannibal™ Process, laboratory activated sludge systems incorporating an anaerobic bioreactor into the sludge recycle stream were operated. In this study, the solids production in the Cannibal system was about 35-40% of the conventional system under steady state conditions. The reduction in waste sludge was optimized when the interchange rate, (the ratio of sludge fed from the activated sludge system to the bioreactor compared to the total mass in the activated sludge system) was set at about 10%. It was found that the release of protein from the anaerobic bioreactor was greater than that from the aerobic bioreactor. The SOUR data suggested that the released protein from the anaerobic bioreactor was easily degraded when the sludge was returned to the activated sludge system. It was also found that when the proportion of sludge added to the anaerobic bioreactor in batch tests was approximately 10%, the protein release was about 30 mg/L. When the proportion of sludge added was increased to 26 to 41%, the release was reduced to 10 and 6 mg/L, respectively. Within 30 hours, the protein release was complete. This suggests that there is an optimum or maximum amount of recycle or interchange (~10%) for the process to function best. / Master of Science
|
9 |
Effect of Digestion Processes on Dewatering and Bound Water Content of SludgeSubramanian, Sangeetha 18 February 2005 (has links)
Solids handling can contribute to a significant portion of the operational costs of a wastewater treatment plant, contributing up to 50% of the total expenses in certain instances. Sludge dewatering and drying therefore become necessary not only from the operational perspective, but also from the economical viewpoint. The J-Vap process combines the above-mentioned processes, by pressure filtration of sludge followed by application of vacuum and heat. However, when cationic polymer conditioned sludge is dewatered in the J-Vap, the polymer is suspected to interact with the filter media at high temperatures, resulting in the formation of a skin layer that hinders efficient dewatering. The first part of the study has looked at various digestion processes and how they affect the skin formation phenomenon. The results showed that temperature played a significant role in determining the amount of polymer that adhered to the filter media.
The second part of the study focused on different kinds of digestion processes and their effects on extracellular polymeric substances, bound water content and dewatering. Bound water tests were used to determine the maximum achievable solids concentration on dewatering. Bound water content of solids obtained from field centrifuges run at different torques and g values were evaluated and fitted on a standard graph obtained from lab pressed sludge with different solids concentration. The bound water was seen to decrease with increasing solids content till 20%, after which a nearly constant 1.0 g of bound water was present for every gram of dry solids seen. The results indicate that nearly 50% solids concentration could be achieved on mechanical dewatering. In reality, only 30 to 35% solids concentration was attained both in the lab and on the field. It was determined that dilatometry attributed the increase in cake solids to the decrease in bound water. However, the use of bound water as a predictive tool for determining cake solids was not practical since the bound water calculations use the solids content in the calculations. / Master of Science
|
10 |
Fate Of Nonylphenol Compounds In Aerobic Semi-continuous ReactorAhmad, Muneer 01 August 2012 (has links) (PDF)
In the last few decades, numerous studies have been conducted on xenobiotic compounds due to their vast use in industries, households, etc. and consequently high exposure of these compounds. The main focus of this study is nonylphenol compounds such as nonylphenol monoethoxylate (NP1EO), nonylphenol diethoxylate (NP2EO), nonylphenoxy acetic acid (NP1EC) and nonylphenol (NP), which are among the harmful xenobiotic compounds that can cause endocrine disruption, cancer and other health problems and which are used widely in the production of surfactants and personal care products. In this study, laboratory scale aerobic semi continuous reactors containing Waste Activated Sludge (WAS) spiked with NP2EO were operated for a period of 91 days, to inspect the decomposition of NP2EO in solid and liquid phases. The results obtained on the final day of operation (91st day) showed that NP2EO degraded into product compounds among which NP1EC contributed to 90% of molar mass. In general, NP2EO showed a sharp degradation while NP1EC was produced rapidly. NP1EO also showed a steady degradation. However, NP was accumulated in the reactor. During the study, TS, VS, TSS and VSS degradation was also monitored and the percentage
removals were found to be between 40-60%. COD removal on the other hand was between 64-66%.
|
Page generated in 0.0931 seconds