• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 17
  • 17
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

名古屋市におけるエアロゾル粒子中の14C濃度 : 炭素成分の発生源推定

NAKAMURA, Toshio, HONJYO, Koji, 中村, 俊夫, 本庄, 浩司 03 1900 (has links)
第23回名古屋大学年代測定総合研究センターシンポジウム平成22(2010)年度報告
12

Distribuce velikostně segregovaného aerosolu v mezni vrstvě atmosféry / Size segregated aerosol within atmospheric boundary layer

Traxmandlová, Nikola January 2017 (has links)
Phenomenon of industrial grounds placed near residential areas can be frequently detected in European cities, which may cause decrease of air quality in these areas. The aim of this diploma thesis is to determine level of concentration and size distribution of aerosol in the planetary boundary layer above the residential area and industrial complex of Škoda auto a.s. in Mladá Boleslav city by using remotely controlled airship. Thereby, the thesis extends terrestrial experiment realized in February and March 2013 which revealed no significant impact of industry and traffic on air quality. Size distribution and concentration of aerosol particles in range from 11.5nm to 10µm with integration time one second or one minute (depending on measure mode - SINGLE or SCAN) was measured by two aerosol spectrometers placed in dirigible gondola during 13 flights on February 11, 2015. SINGLE mode lead the airship in one stable flight level during one flight above residential area and industrial complex of Škoda auto a.s. Whereas SCAN mode changed flight level every two minutes during the flight of airship above sports fields in residential zone only. Exhausts of car painting halls and place of automobile loading were identified as the sources of nanoparticles, PM1 a PM2.5 and coarse aerosol in the industrial area...
13

Experimentelle Untersuchungen zur Ablagerung und Remobilisierung von Aerosolpartikeln in turbulenten Strömungen

Barth, Thomas 15 July 2014 (has links)
Im Rahmen dieser Dissertation werden eine Serie von Grundlagenexperimenten zur Ablagerung (Deposition) und Remobilisierung (Resuspension) von Aerosolpartikeln in turbulenten Strömungen beschrieben. Die Kernmotivation stellt die Quelltermanalyse von Druckentlastungsstörfällen von Hochtemperaturreaktoren (HTR) dar. Im Primärkreislauf früherer HTR-Forschungsanlagen wurden größere Mengen an radiologisch belastetem Graphitstaub gefunden. Dieser Staub scheint größtenteils durch Abrieb zwischen den graphitischen Kernstrukturen entstanden zu sein und verteilte sich während des fortlaufenden Reaktorbetriebs über sämtliche Oberflächen des Primärkreislaufs. Während eines Druckentlastungsstörfalls kann dieser Staub durch die Gasströmung remobilisiert und aus dem Primärkreislauf ausgetragen werden. Eine Quelltermanalyse solch eines Störfallszenarios erfordert die Kenntnis über die Menge und die räumliche Verteilung des Staubs, die radiologische Belastung sowie das Remobilisierungsverhalten in Bezug auf die zu erwartenden Strömungstransienten. Nach dem heutigen Stand von Wissenschaft und Technik kann die räumlich-zeitliche Verteilung des Staubs im Primärkreislauf für stationären Reaktorbetrieb unter Verwendung eindimensionaler Systemcodes abgeschätzt werden. Jedoch ist unbekannt, welcher Anteil des Staubinventars durch die Gasströmung remobilisiert und aus dem Primärkreislauf ausgetragen werden würde. Zur systematischen Untersuchung des Staubtransportverhaltens in turbulenten Strömungen wurden zwei kleinskalige Versuchsanlagen entwickelt und eine Serie von Depositions- und Resuspensionsexperimenten durchgeführt. Die partikelbeladene Strömung in der Heißgasumgebung des HTR-Primärkreislaufs wurde über die Verwendung von Ähnlichkeitskennzahlen auf eine Luftströmung bei Umgebungsbedingungen herunterskaliert. Die Strömung und die Partikel wurden mittels hochauflösender, bildgebender und nichtinvasiver Messverfahren räumlich und zeitlich vermessen, um eine umfangreiche Datenbasis für die Analyse der Partikeltransportprozesse zu erstellen. Inhaltlich lassen sich die durchgeführten Untersuchungen in drei Teile gliedern. Der erste Teil besteht aus zwei Studien über die Deposition und Resuspension monodisperser, sphärischer Einzelpartikel in einer ungestörten, horizontalen Kanalströmung. Die systematische Variation experimenteller Randbedingungen wie der Partikelgröße, der Oberflächenrauheit und der Strömungsgeschwindigkeit ermöglichte die Quantifizierung der einzelnen Einflussgrößen. Im zweiten und dritten Teil der Dissertation wurden die Deposition und Resuspension einer mehrschichtigen Ablagerung (Partikel-Multilayer) zwischen periodischen Stufen und in einer Kugelschüttung untersucht, um die komplexe Interaktion zwischen der turbulenten Strömung und der Multilayer-Ablagerung weiter zu erforschen. Die gewonnenen Erkenntnisse leisten einen Beitrag für die Quelltermanalyse des Staubtransports im HTR-Primärkreislauf und können für die Weiterentwicklung numerischer Strömungssimulationen des Partikeltransports in turbulenten Strömungen verwendet werden.:Kurzfassung III Abstract V Abkürzungs- und Symbolverzeichnis X 1 Einleitung 1 1.1 Grundzüge der Hochtemperaturreaktortechnik 1 1.2 Sicherheitsrelevante Aspekte des Hochtemperaturreaktors 3 1.3 Weiterführende Bedeutung der Ablagerung und Remobilisierung von Aerosolpartikeln 4 1.4 Inhalt der Dissertation 5 2 Strömungsmechanische Grundlagen und Stand der Forschung 8 2.1 Partikeleigenschaften des Graphitstaubs im HTR-Primärkreislauf 8 2.2 Beschreibung wandgebundener, turbulenter Strömungen 9 2.3 Turbulente Strömung durch eine Kugelschüttung 12 2.4 Einzelpartikel-Deposition in turbulenten Strömungen 13 2.5 Multilayer-Partikel-Deposition und -Resuspension in turbulenten Strömungen 21 3 Versuchsanlagen und Messtechnik 22 3.1 Die Versuchsanlage Gas Particle Loop 22 3.2 Die Versuchsanlage Pebble Bed Loop 24 3.3 Strömungsmechanische Instrumentierung 26 3.4 Aerosolmesstechnische Instrumentierung 28 4 Partikeltransport in einer horizontalen Kanalströmung 30 4.1 Turbulente Durchmischung der Aerosolpartikel und Strömungsentwicklung 30 4.2 Einzelpartikeldeposition 36 4.2.1 Experimenteller Aufbau 37 4.2.2 Randbedingungen und Versuchsdurchführung 38 4.2.3 Datenanalyse 39 4.2.4 Ergebnisse 42 4.2.5 Schlussfolgerungen 44 4.3 Einzelpartikelresuspension 46 4.3.1 Experimenteller Aufbau und Instrumentierung 47 4.3.2 Randbedingungen und Versuchsdurchführung 48 4.3.3 Datenanalyse 50 4.3.4 Resuspension sphärischer Glaspartikel von einer glatten Glasoberfläche 52 4.3.5 Resuspension sphärischer Polypropylen-Partikel von einer glatten Glasoberfläche 54 4.3.6 Resuspension sphärischer Glaspartikel von einer rauen Stahloberfläche 56 4.3.7 Diskussion der Ergebnisse und Schlussfolgerungen 57 5 Partikeltransport in einem Kanal mit periodischen Stufen 61 5.1 Auswahl der Testgeometrie 61 5.2 Instrumentierung 62 5.3 Versuchsdurchführung 64 5.4 Turbulentes Strömungsfeld zwischen den periodischen Stufen 65 5.5 Experimentelle Ergebnisse der Multilayer-Partikel-Deposition 67 5.5.1 Orts- und zeitaufgelöste Verteilung des Schichtdickenaufbaus 67 5.5.2 Oberflächenrauheit und Volumenporosität der Multilayer-Ablagerung 74 5.6 Experimentelle Ergebnisse der Multilayer-Partikel-Resuspension 75 5.6.1 Räumliche Verteilung der verbleibenden Partikel-Multilayer 75 5.6.2 Integrale Betrachtung des Resuspensionsvorgangs 79 5.6.3 Oberflächenrauheit und Volumenporosität der Partikel-Multilayer 81 5.7 Schlussfolgerungen 82 6 Partikeltransport in einer Kugelschüttung 84 6.1 Bisherige experimentelle und numerische Untersuchungen 85 6.2 Experimentelle Randbedingungen und Versuchsdurchführung 86 6.3 Charakterisierung der turbulenten Strömung im Kugelhaufen 88 6.4 Positronenemissionstomographie – Messprinzip und Datenauswertung 91 6.5 Deposition von flüssigen Aerosolpartikeln 93 6.5.1 Erzeugung und radioaktive Markierung der flüssigen Aerosolpartikel 93 6.5.2 Partikelkonzentrationsmessungen über der Kugelschüttung 94 6.5.3 Zeitlicher Verlauf der gemessenen Aktivität 96 6.5.4 Axiale Verteilung der gemessenen Aktivität 97 6.5.5 Dreidimensionale Verteilung der Aktivität im Kugelhaufen 98 6.6 Deposition und Remobilisierung von technischem Graphitstaub 99 6.6.1 Radioaktive Markierung der Graphitpartikel 99 6.6.2 Konzentrations- und Geschwindigkeitsmessungen 101 6.6.3 Zeitlicher Verlauf der gemessenen Aktivität 103 6.6.4 Räumliche Verteilung der Aktivität in der Kugelschüttung 105 6.6.5 Quantifizierung des Resuspensionsexperiments 107 6.7 Zusammenfassende Schlussfolgerungen 108 7 Diskussion der Ergebnisse 111 7.1 Einzel- und Multilayer-Partikelablagerungen 111 7.2 Einzel- und Multilayer-Partikelresuspension 112 7.3 Vergleich der experimentellen Daten mit numerischen Simulationen 113 8 Zusammenfassung und Ausblick 117 8.1 Grundlegende Erkenntnisse den experimentellen Studien 118 8.2 Bedeutung der Erkenntnisse für das Fachgebiet und die Sicherheitsbewertung des HTR 120 8.3 Ausblick 122 8.3.1 Einzelpartikel-Deposition in turbulenten Kanalströmungen 122 8.3.2 Einzelpartikel-Resuspension in turbulenten Kanalströmungen 123 8.3.3 Multilayer-Partikel-Deposition und -Resuspension zwischen periodischen Stufen 124 8.3.4 Untersuchung des Partikeltransports in komplexen Geometrien mittels PET 125 Literaturverzeichnis 127 Appendix 137 Danksagung 139 / Aerosol particle deposition and resuspension experiments in turbulent flows were performed to investigate the complex particle transport phenomena and to provide a database for the development and validation of computational fluid dynamics (CFD) codes. The background motivation is related to the source term analysis of an accidental depressurization scenario of a High Temperature Reactor (HTR). During the operation of former HTR pilot plants, larger amounts of radio-contaminated graphite dust were found in the primary circuit. This dust most likely arose due to abrasion between the graphitic core components and was deposited on the inner wall surfaces of the primary circuit. In case of an accident scenario, such as a depressurization of the primary circuit, the dust may be remobilized and may escape the system boundaries. The estimation of the source term being discharged during such a scenario requires fundamental knowledge of the particle deposition, the amount of contaminants per unit mass as well as the resuspension phenomena. Nowadays, the graphite dust distribution in the primary circuit of an HTR can be calculated for stationary conditions using one-dimensional reactor system codes. However, it is rather unknown which fraction of the graphite dust inventory may be remobilized during a depressurization of the HTR primary circuit. Two small-scale experimental facilities were designed and a set of experiments was performed to investigate particle transport, deposition and resuspension in turbulent flows. The facility design concept is based on the fluid dynamic downscaling of the helium pressure boundary in the HTR primary circuit to an airflow at ambient conditions in the laboratory. The turbulent flow and the particles were recorded by high-resolution, non-invasive imaging techniques to provide a spatio-temporal insight into the particle transport processes. The different investigations of this thesis can be grouped into three categories. Firstly, the deposition and resuspension of monodisperse single particles in a horizontal turbulent channel flow was studied. The systematic variation of the experimental boundary conditions allows for the quantification of the influences of particle size, surface roughness, and fluid velocity. In the second and third part of this thesis, the deposition and resuspension of a particle multilayer between periodic steps and in a pebble bed was studied to explore the complex interaction between the turbulent flow and the particles, respectively. The findings of this thesis are a contribution to the source term analysis of HTR related accidental depressurizations. Furthermore, the database can be applied to CFD code developments for the numerical simulation of particle transport processes in turbulent flows.:Kurzfassung III Abstract V Abkürzungs- und Symbolverzeichnis X 1 Einleitung 1 1.1 Grundzüge der Hochtemperaturreaktortechnik 1 1.2 Sicherheitsrelevante Aspekte des Hochtemperaturreaktors 3 1.3 Weiterführende Bedeutung der Ablagerung und Remobilisierung von Aerosolpartikeln 4 1.4 Inhalt der Dissertation 5 2 Strömungsmechanische Grundlagen und Stand der Forschung 8 2.1 Partikeleigenschaften des Graphitstaubs im HTR-Primärkreislauf 8 2.2 Beschreibung wandgebundener, turbulenter Strömungen 9 2.3 Turbulente Strömung durch eine Kugelschüttung 12 2.4 Einzelpartikel-Deposition in turbulenten Strömungen 13 2.5 Multilayer-Partikel-Deposition und -Resuspension in turbulenten Strömungen 21 3 Versuchsanlagen und Messtechnik 22 3.1 Die Versuchsanlage Gas Particle Loop 22 3.2 Die Versuchsanlage Pebble Bed Loop 24 3.3 Strömungsmechanische Instrumentierung 26 3.4 Aerosolmesstechnische Instrumentierung 28 4 Partikeltransport in einer horizontalen Kanalströmung 30 4.1 Turbulente Durchmischung der Aerosolpartikel und Strömungsentwicklung 30 4.2 Einzelpartikeldeposition 36 4.2.1 Experimenteller Aufbau 37 4.2.2 Randbedingungen und Versuchsdurchführung 38 4.2.3 Datenanalyse 39 4.2.4 Ergebnisse 42 4.2.5 Schlussfolgerungen 44 4.3 Einzelpartikelresuspension 46 4.3.1 Experimenteller Aufbau und Instrumentierung 47 4.3.2 Randbedingungen und Versuchsdurchführung 48 4.3.3 Datenanalyse 50 4.3.4 Resuspension sphärischer Glaspartikel von einer glatten Glasoberfläche 52 4.3.5 Resuspension sphärischer Polypropylen-Partikel von einer glatten Glasoberfläche 54 4.3.6 Resuspension sphärischer Glaspartikel von einer rauen Stahloberfläche 56 4.3.7 Diskussion der Ergebnisse und Schlussfolgerungen 57 5 Partikeltransport in einem Kanal mit periodischen Stufen 61 5.1 Auswahl der Testgeometrie 61 5.2 Instrumentierung 62 5.3 Versuchsdurchführung 64 5.4 Turbulentes Strömungsfeld zwischen den periodischen Stufen 65 5.5 Experimentelle Ergebnisse der Multilayer-Partikel-Deposition 67 5.5.1 Orts- und zeitaufgelöste Verteilung des Schichtdickenaufbaus 67 5.5.2 Oberflächenrauheit und Volumenporosität der Multilayer-Ablagerung 74 5.6 Experimentelle Ergebnisse der Multilayer-Partikel-Resuspension 75 5.6.1 Räumliche Verteilung der verbleibenden Partikel-Multilayer 75 5.6.2 Integrale Betrachtung des Resuspensionsvorgangs 79 5.6.3 Oberflächenrauheit und Volumenporosität der Partikel-Multilayer 81 5.7 Schlussfolgerungen 82 6 Partikeltransport in einer Kugelschüttung 84 6.1 Bisherige experimentelle und numerische Untersuchungen 85 6.2 Experimentelle Randbedingungen und Versuchsdurchführung 86 6.3 Charakterisierung der turbulenten Strömung im Kugelhaufen 88 6.4 Positronenemissionstomographie – Messprinzip und Datenauswertung 91 6.5 Deposition von flüssigen Aerosolpartikeln 93 6.5.1 Erzeugung und radioaktive Markierung der flüssigen Aerosolpartikel 93 6.5.2 Partikelkonzentrationsmessungen über der Kugelschüttung 94 6.5.3 Zeitlicher Verlauf der gemessenen Aktivität 96 6.5.4 Axiale Verteilung der gemessenen Aktivität 97 6.5.5 Dreidimensionale Verteilung der Aktivität im Kugelhaufen 98 6.6 Deposition und Remobilisierung von technischem Graphitstaub 99 6.6.1 Radioaktive Markierung der Graphitpartikel 99 6.6.2 Konzentrations- und Geschwindigkeitsmessungen 101 6.6.3 Zeitlicher Verlauf der gemessenen Aktivität 103 6.6.4 Räumliche Verteilung der Aktivität in der Kugelschüttung 105 6.6.5 Quantifizierung des Resuspensionsexperiments 107 6.7 Zusammenfassende Schlussfolgerungen 108 7 Diskussion der Ergebnisse 111 7.1 Einzel- und Multilayer-Partikelablagerungen 111 7.2 Einzel- und Multilayer-Partikelresuspension 112 7.3 Vergleich der experimentellen Daten mit numerischen Simulationen 113 8 Zusammenfassung und Ausblick 117 8.1 Grundlegende Erkenntnisse den experimentellen Studien 118 8.2 Bedeutung der Erkenntnisse für das Fachgebiet und die Sicherheitsbewertung des HTR 120 8.3 Ausblick 122 8.3.1 Einzelpartikel-Deposition in turbulenten Kanalströmungen 122 8.3.2 Einzelpartikel-Resuspension in turbulenten Kanalströmungen 123 8.3.3 Multilayer-Partikel-Deposition und -Resuspension zwischen periodischen Stufen 124 8.3.4 Untersuchung des Partikeltransports in komplexen Geometrien mittels PET 125 Literaturverzeichnis 127 Appendix 137 Danksagung 139
14

Light absorption of atmospheric soot particles over Central Europe

Nordmann, Stephan 01 March 2013 (has links)
Soot particles are a major absorber of shortwave radiation in the atmosphere. They exert a rather uncertain direct and semi-direct radiative effect, which causes a heating or in some cases a cooling of the atmosphere. The mass absorption coefficient is an essential quantity to describe this light absorption process. This work presents new experimental data on the mass absorption coefficient of soot particles in the troposphere over Central Europe. Mass absorption coefficients were derived as the ratio between the light absorption coefficient determined by multi angle absorption photometry (MAAP), and the soot mass concentration determined by Raman spectroscopy. The Raman method is sensitive to graphitic structures present in the particle samples, and was calibrated in the laboratory using Printex90 model particles. The mass absorption coefficients were determined for a number of seven observation sites, ranging between 3.9 and 7.4 m²/g depending on measurement site and observational period. The highest values were found in an continentally aged air mass in winter, where we presumed soot particles to be present mainly in internal mixture. The regional model WRF-Chem was used in conjunction with a high resolution soot emission inventory to simulate soot mass concentrations and absorption coefficients for the Central European Troposphere. The model was validated using soot mass concentrations from Raman measurements and absorption coefficients. Simulated soot mass concentrations were found to be too low by around 50 %, which could be improved by scaling the emissions by a factor of two. In contrast, the absorption coefficient was positively biased by around 20%. Adjusting the modeled mass absorption coefficient to measurements, the simulation of soot light absorption was improved. Finally, the positive direct radiative forcing at top of the atmosphere was found to be lowered by up to 70% for the model run with adjusted soot absorption behaviour, , indicating a decreased heating effect on the atmosphere.
15

Temporal and spatial variability of black carbon mass concentrations and size-resolved particle number concentrations in Germany ranging from city street to high Alpine environments

Sun, Jia 18 January 2022 (has links)
The German Ultrafine Aerosol Network (GUAN) has been continuously measuring the particle number size distribution (PNSD) and equivalent black carbon (eBC) mass concentration since 2009 at 17 atmospheric observatories in Germany, covering all environments from roadside to high-Alpine environments. GUAN provides us an opportunity to reduce the knowledge gaps about the spatio-temporal variation of sub-micrometer particles in different size ranges and eBC mass. These data are not only highly valuable for air pollution and health studies but also can help to reduce the uncertainties in the climate model predictions. With these long-term multi-site-category measurements, it was investigated for the first time how pollutant parameters interfere with spatial characteristics and site categories. Based on this first investigation, the long-term changes in size-resolved particle number concentrations (PNC) and eBC mass concentration were investigate to evaluate the effectiveness of the emission mitigation policies in Germany. The emission and pollutants near ground can be frequently transported to the free troposphere (FT) in the mountain areas. To identify if the decreased emissions at lower-altitudes have affected the aerosol loading in the aged, well-mixed FT air over Central Europe, the long-term trends in PNC and eBC mass concentration were analyzed for the FT and planetary boundary layer (PBL) conditions separately, at two high-Alpine observation sites. In summary, this dissertation aims to answer the following related scientific questions: Q1: How do the sub-micrometer PNSD, PNC, and eBC mass concentration interfere with spatial characteristics and site categories? (First publication) In the first publication (Sun et al., 2019), the spatio-temporal variability of aerosol parameters including PNSD, PNCs, and eBC mass concentration from the GUAN network were investigated for the period 2009−2014. Significant differences in the pollutant concentration were observed among various site categories. The six-year median value of sub-micrometer PNC (diameter range 20–800 nm) varies between 900 and 9000 cm−3, while median eBC mass concentration varies between 0.1 and 2.3 μg m-3 in 17 observation sites. PNCs in different size ranges were found in different spatial variabilities. A cross-correlation between PNSD and eBC mass concentration was analyzed to detect the influence of anthropogenic sources for different site categories. The size-dependent spatial variability analysis of PNCs extracted three size intervals: a higher spatial variability size range 10–30 nm, a transition size range 30–100 nm and a lower spatial variability size range 100–800 nm. Based on the evaluated spatial variability, the measured parameters at various sites were clustered by a hierarchical clustering approach, which revealed different spatial clusters for “source-driven” and “long-range transport” parameters. This result suggests that the traditional “site category” (i.e. urban, and regional background, etc.) concerning mainly the influence of local sources cannot always catch the variation of aerosol particle mass or number concentrations. The dominant factors for various parameter are different, leading to different variability and spatial distribution. The result of spatial clustering offers a sound scientific base to compare pollutant parameters measured in different locations and environments. By assessing the relationship between the measured parameters and geographical distance between different sites, the spatial variability of the aerosol parameters follows the “First Law of Geography” that everything is related to everything else, but near things are more related than distant things (Tobler, 1970). However, different parameters show different sensitivities on geographical distance. The analysis provides an important reference for setting up an observation network with a specific research purpose and is also useful for the regional scale dispersion models or land-use regression models. Q2: How do the sub-micrometer PNSD, PNC, and eBC mass concentration change at a decadal scale? Have the implementations of emission mitigation policies affected the observed decadal trend? (Second publication) In the second publication (Sun et al., 2020), long-term trends in atmospheric PNCs and eBC mass concentration for a 10 years period (2009–2018) were determined for 16 sites of the GUAN, ranging from roadside to high-Alpine. To ensure the data consistency for the trend detection, a thorough and detailed data quality check and data cleaning for the large GUAN dataset was performed. Statistically significant decreasing trends were found for 85% of the parameters and observation sites indicating an overall decreasing trend in sub-micrometer PNC (except N[10−30]) and eBC mass concentration all over Germany. Comparing the trends of measured parameters with the long-term change in total emission, we proofed that the observed trends of PNCs and eBC mass concentrations were mainly due to the emission reduction. The detailed diurnal and seasonal trends in eBC mass concentration and PNCs further confirmed that the observed decreasing trends were largely owing to the reduced emissions such as traffic emission, residential emission, and industry emission, etc. Moreover, the inter-annual changes of meteorological conditions and long-range transport pattern were found not to be the main reason for the decreases in pollutant parameters. This study suggests that a combination of emission mitigation policies can effectively improve the air quality over large spatial scales such as Germany. Given the relative novelty of the long-term measurements (PNSD, eBC mass concentration) in a network such as GUAN, the results proved to be quite robust and comprehensive. Q3: Have the decreased PNC and eBC mass concentration due to emission mitigation policies at the lower-altitudes affected the background air in lower FT over Central Europe? (Third publication) In the third publication (Sun et al., 2021), the long-term change of the eBC mass concentration and size-resolved PNCs were determined and analyzed at two high Alpine stations for the period 2009-2018: Schneefernerhaus at mountain Zugspitze in Germany (ZSF, 2671 m a.s.l.) and Jungfraujoch in Switzerland (JFJ, 3580 m a.s.l.). The trend analysis was performed for the FT and PBL-influenced conditions separately, aiming to assess whether the reduced emissions at lower-altitudes over Central Europe can affect the background air in the lower FT on a large spatial scale. The FT and PBL conditions at the two stations were segregated using the adaptive diurnal minimum variation selection (ADVS) method. The result showed that the FT condition in cold months is more prevalent than in warm months. Overall, the FT conditions frequency was ~25% and 6% in the cold and warm seasons at ZSF, respectively. At JFJ, the frequency of FT was ~45% and 10% in these two seasons, respectively. The PNC and eBC mass concentration showed a statistically significant decrease during PBL time. The observed decreasing trends in eBC mass concentration in the PBL-influenced condition are well consistent with the reported trends in total BC emission in Germany and Switzerland. For the FT conditions, decreases in PNC and eBC mass concentration over the years was detected at both sites, suggesting the background PNC and eBC mass in the lower FT over Central Europe has decreased as well. The implementation of emission mitigation policies is the most decisive factor but the weather pattern change over Central Europe also has contributed to the decreasing trends in FT condition.:List of Figures ……………………………………………………………………………………………..I List of Tables ..……………………………………………………………………………………………..I Abbreviations .……………………………………………………………………………………………II 1. Introduction …………………………………………………………………………………………….1 1.1 Role of atmospheric sub-micrometer aerosol particles…...………………………………………...1 1.2 Measurement of sub-micrometer particle number size distribution, particle number concentration, and eBC mass concentration…..……………………………………………….………………………….2 1.3 Previous long-term observations of PNSD, PNC, and eBC mass concentration…………………...4 1.4 Objectives...………………………………………………………………………………………….6 2. Data and Method…..……………………………………………………………………………………9 2.1 The German Ultrafine Aerosol Network (GUAN) …………………………………………………9 2.1.1 Measurement sites in GUAN…………………………………………………………………..10 2.1.2 Instrumental set-up.……….………………………………………………………….…………14 2.1.3 Quality assurance.………………………………………………………………………….……16 2.1.4 Data coverage…..………………………………………………………………………………..17 2.2. High-Alpine observatory Jungfraujoch (JFJ)……………………………………………………..18 2.2.1 Measurement site……….……………………………………………………………………….18 2.2.2 Instrumentation ..………………………………………………………………………………..19 2.3 Data analysis methods……………………………………………………………………………….19 2.3.1 Agglomerative hierarchical clustering….……………………………………………………...19 2.3.2 Customized Sen’s slope estimator…………………..…………………………………………...21 2.3.3 Generalized least-square regression and autoregressive bootstrap confidence intervals (GLS- ARB)…………………………………………………………………………………………………21 2.3.4 Seasonal Mann-Kendal test…..………………….………………………………………………22 2.3.5 Back-trajectory classification method….……………………………………………………...24 3. Results and Discussion…..………………………………………………………………………….27 3.1 First publication….…………………………………………………………………………………..27 3.1.1 Variability of black carbon mass concentrations, sub-micrometer particle number concentrations and size distributions: results of the German Ultrafine Aerosol Network ranging from city street to High Alpine locations……………………………………...………………………………………...27 3.1.2 Supporting information..……………………………………………………………………….41 3.2 Second publication…………………………………………………………………………………..45 3.2.1 Decreasing trends of particle number and black carbon mass concentrations at 16 observational sites in Germany from 2009 to 2018…..…………………………………………………………..45 3.2.2 Supporting information...……………………………………………………………………….66 3.3 Third publication……………………………...……………………………………………………..75 3.3.1 Long-term trends of black carbon and particle number concentration in the lower free troposphere in Central Europe…………………………………………………………………………75 3.3.2 Supporting information..…….……………………………………………………………….92 4. Summary and Conclusions..………………………………………………………………………… 95 5. Outlook….…………………………………………………………………………………………...99 Appendix A….………………………………………………………………………………………...100 Bibliography…………………………………………………………………………………………...101 Acknowledgements….…………………………………………………………………………………115
16

Tvorba a transformace atmosférického aerosolu v mezní vrstvě / Formation and transformation of atmospheric aerosol in boundary layer

Holubová Šmejkalová, Adéla January 2021 (has links)
Title: Formation and transformation of atmospheric aerosol in boundary layer Author: Mgr. Adéla Holubová Šmejkalová Institute: Institute for Environmental Studies Supervisor: Ing. Vladimír Ždímal, Dr., Institute of Chemical Process Fundamen- tals of the CAS Training workplace: Institute of Chemical Process Fundamentals of the CAS Abstract: The experimental measurement of aerosol clusters from 1.17 nm in size was carried out from August 2016 till December 2018 at the National Atmospheric Observatory Košetice. Atmospheric conditions leading to aerosol clusters stabili- zation, fresh particles formation and particle growth were analyzed. Data of days with no new particle formation confrmed the connection between mixing layer height development and decrease of total aerosol number concentration together with lower gaseous pollutant concentrations. On the contrary, new particle for- mation process overcomes dilution of the atmosphere by increasing the number of freshly nucleated particles. Only decreasing gaseous pollutant concentrations were observed during these events. The atmospheric boundary layer was high du- ring new particle formation events that can mean enrichment of the atmosphere by other components transported by long-range transport or some transfer from the free troposphere. The measurement in...
17

Modélisation numérique de l’abattage humide comme procédé d’assainissement de l’air / Numerical modeling of aerosol particles scavenging by drops as a process of air depollution

Cherrier, Gaël 01 December 2017 (has links)
Ce doctorat est consacré à la modélisation de l’abattage humide comme procédé d’assainissement de l’air. Les situations d’abattage humide étudiées concernent des particules d’aérosol de diamètre aérodynamique variant entre 1 nm et 100 µm capturées dans l’air par des gouttes d’eau de diamètre compris entre 80 µm et 600 µm (nombre de Reynolds de goutte dans la gamme [1 ; 100]). La modélisation de l’assainissement de l’air par abattage humide nécessite deux phases complémentaires. La première étape consiste à définir un noyau de capture calculant le débit d’aérosols capturés par une goutte dans une situation qui peut être complexe de par la grande variété de collectes différentes (brownienne, phorétique, électrostatique et inertielle). La deuxième étape repose sur la définition d’une approche de simulation numérique des phénomènes prenant place dans l’abattage humide. À cet effet, l’approche de simulation de l’abattage humide proposée comporte une modélisation RANS pour simuler l’écoulement de l’air, une approche lagrangienne donnant la trajectoire des gouttes d’eau et une méthode eulérienne permettant de suivre l’évolution du champ de concentration en particules d’aérosol. Ainsi, la capture de particules d’aérosol par des gouttes d’eau est modélisée via l’implémentation du noyau de capture précédemment défini dans un terme puits au sein du modèle Diffusion-Inertia de Zaichik et al., (2004) / This PhD-Thesis is dedicated to the numerical modeling of aerosol particles scavenging by drops. Investigated situations are about aerosol particles of aerodynamic diameter ranging from 1 nm to 100 µm captured in the air by water drops of diameter varying between 80 µm and 600 µm, with corresponding droplet Reynolds number ranging between 1 and 100. This air depollution modeling is achieved in two steps. The first step consists in obtaining a scavenging kernel predicting the flow rate of aerosol particles captured by a drop in a situation where several collection mechanisms may take place (Brownian, phoretic, electrostatic and inertial scavenging). The aim of the second step is to propose a numerical simulation modeling the scavenging phenomenon. To do so, the scavenging simulation includes a RANS modeling for the air flow, a Lagrangian approach for the drops and an Eulerian approach for the aerosol particles. Thus, aerosol scavenging by drops is modeled by implementing the collection kernel defined previously into a sink term in the Diffusion-Inertia model of Zaichik et al., (2004)

Page generated in 0.7328 seconds