Spelling suggestions: "subject:"aerospace materials"" "subject:"erospace materials""
121 |
Optimization of Nuclear Thermal Propulsion Cooldown Using Real-Time Simulations: Experimental ApproachGula, Noah 09 August 2022 (has links)
No description available.
|
122 |
<b>New Insights into the Impact Erosion Response of Glass Fiber-Reinforced Polymer Composites</b>Shane Paulson (20372721) 10 December 2024 (has links)
<p dir="ltr">The leading edges of helicopter rotor and wind turbine blades, largely made of fiber-reinforced polymer composites, are susceptible to impact from small particles of a variety of materials at velocities up to the speed of sound. To ensure structural integrity of these blades over their life spans, it is essential to fundamentally understand how these impacts damage, and subsequently erode, the blade material and structure. However, experimental investigations of single particles at impact velocities simulating realistic impact conditions are scarce. This study is designed to observe the local crater formation process from a single particle impact at the upper limit of rotor tip velocities to identify the key erodent parameters behind the damage mechanisms in a polymer composite. It is also aimed to further examine damage mechanisms in a plate sample to determine the extent of material loss and global deformation of the impact surface. In experiments presented, a glass fiber-reinforced epoxy composite was subjected to single impacts from spherical particles at velocities up to Mach 1. A specifically designed light gas gun was used to launch particles at relevant velocities. Target configurations were selected to examine the highly localized crater formation process and to measure the global deformation of a target plate subjected to high-velocity impact by spherical particles 1.59 mm in diameter. The crater formation processes from impacts by particles of five different materials were evaluated by high-speed <i>in-situ</i> imaging as well as post-mortem inspection with a scanning electron microscope. The global deformation of a target plate was examined <i>in-situ</i> using stereo DIC and post-mortem using optical profilometry. The composite in this study was found to exhibit brittle fracture behavior during the crater formation process at the local level, with ductile behavior observed at the global scale in a plate sample. The formation of the crater in the target material was found to follow a two-stage process from a single impact event. The first stage creates a debris cloud at the perimeter of the impact site, with a very consistent outer diameter across all five projectile materials. In the second stage, material at the center of the crater is removed from the target as the loading wave reflects off the free boundary after the projectile has separated from the target. The second stage behavior depended on two distinct projectile groups: those that experienced plastic deformation on impact with the target material and those that did not undergo any apparent plastic deformation. A GFRP composite with a small yarn, plain weave reinforcement structure was found to exhibit anisotropic flexural wave propagation near the impact site. This degree of anisotropy is reduced as the wave propagates further from the impact site. These results add new insights into a comprehensive fundamental understanding of impact damage and erosion mechanisms in fiber-reinforced polymer composite materials and structures.</p>
|
123 |
Hybrid Composite Materials and ManufacturingDiana Gabrielle Heflin (12507373) 05 May 2022 (has links)
<p>Composite materials have become widely used for high-performance applications, particularly in the aerospace industry where annual production volumes are low and a higher part cost can be supported. During the last decades composite materials are beginning to see use in a broader range of applications, including the automotive and sports equipment industries. Simultaneously, there is increasing demand from consumers and regulatory bodies to make cars more fuel efficient and in the case of EV’s longer drive range, which can be accomplished by reducing vehicle weight. Composite materials have high specific stiffnesses and strengths, resulting in weight savings when they are used to replace traditionally metal components. However, in order for widespread adoption of composite parts to be viable for the automotive industry, high-rate manufacturing must be realized to reach the required production volumes and part costs.</p>
<p>Toward this goal, advanced composite manufacturing techniques have been developed. These techniques typically combine high automation with careful material selection, which can include fast-curing resins and thermoplastics with adapted melt viscosities and thermomechanical properties. They also allow for complex part geometries to be produced in a single step, reducing the need for additional assembly time. Further, they can be used to easily create multi-material components, which can result in parts that benefit from the desirable mechanical properties of the constituent materials without sacrificing performance.</p>
<p>This thesis develops a framework for the design and high-rate manufacture of multi-material components. First, a critical literature review is conducted to develop a clear understanding of existing research into combinations of dissimilar materials, including epoxy/polyamide, thermoplastic elastomer/polyamide, and aluminum/thermoplastic. It is shown that, for all material combinations studied, interfacial delamination and subsequent deformation are the primary energy absorption mechanisms and that manufacturing conditions may affect interfacial bond strength. Based on this foundation, adhesion testing is performed on devoted sample configurations fabricated under controlled molding conditions. For these material combinations, interfacial adhesion can be significantly improved with carefully selected processing temperatures, even to the extent that adhesive bond between dissimilar materials can be stronger than the cohesive bond in the constituent materials. Next, impact and quasi-static indentation testing were performed to determine the effects of interfacial adhesion and part design on crash performance. The materials tested all benefit from the placement of a more ductile material on the impacted side of the sample (top surface), indicating a more favorable dissipation of the contact stresses from the impactor, and a higher strength material on the bottom surface where it can withstand tensile stresses imposed by impact-induced bending. </p>
<p> Finally, a complex part consisting of a unidirectional polyamide/carbon fiber preform and a thermoplastic overmold is manufactured via a hybrid overmolding process. Interfacial temperature during overmolding is varied to confirm if the same improvements in interfacial bond strength seen in the compression molding test samples are attainable under realistic high-rate manufacture conditions. Additionally, the preform volume is varied to examine the effect of the preform reinforcement on a part’s bending performance. For this system, varying the preform temperature had no effect on interfacial bond strength. A predictive technical cost model is also used to determine the effect of manufacturing changes on part costs. Increasing the tow volume three-fold increased the absorbed energy by more than 30% and requires an increased cost of only 3.8%. </p>
<p>This thesis proves that a tough, multi-material part can be rapidly produced via hybrid overmolding. It was demonstrated that a complex shaped part could be produced at a complete line cycle time of approximately 90 secondsmaking it a viable method to produce high-performance, low-cost components. </p>
|
124 |
Exploration of Data Clustering Within a Novel Multi-Scale Topology Optimization FrameworkLawson, Kevin Robert 10 August 2022 (has links)
No description available.
|
125 |
Thermal Imaging of RDCs and the Characterization of an Operating Map for a Novel RDC GeometryGeller, Alexander C. January 2020 (has links)
No description available.
|
126 |
EFFECTS OF THE LOCAL MICROMECHANICS AND ELECTROCHEMISTRY ON THE GALVANIC CORROSION OF AA7050-7451Andrea Nicolas (6862598) 15 August 2019 (has links)
<div>The service life of aircraft structure, primarily composed of aluminum alloys, is markedly lower when galvanic corrosion is present due to early crack initiation at localized pitting, with the likelihood of cracking being higher at pits spanning several microns. To understand the joint effect that the mechanical and chemical behavior of AA7050-T7451 have on the evolution of corrosion prior and until its transition to cracking, the microstructure, constituent particles, mechanical strains, and the corrosion morphology were experimentally characterized using high-resolution methods and the mechanical stresses are computationally modeled at the micrometer level using a FFT-based crystal plasticity framework. </div><div><br></div><div>The material was corroded under both mechanically loaded and unloaded conditions under different corrosion intervals to properly capture the evolution of corrosion before, during, and after particle fallout. For the events prior to cracking, statistical cross-correlations between the mechanical state of the material and the corrosion morphology were performed to understand the mechanisms driving corrosion at its various stages. For the cracking event and its subsequent growth, the joint analysis of strains and stresses obtained from 3D crystal plasticity models were used to calculate Fatigue Indicator Parameters (FIPs) that can quantitatively give an insight of the major mechanisms driving crack initiation and growth in pre-corroded materials. The development of micromechanical models that account for both the environmental degradation and the microstructure in the material allowed to accurately predict the location of crack initiation arising from pits, which has been a longstanding problem in the field of corrosion. It is concluded that both corrosion growth and its transition to cracking are multivariable events, where corrosion growth is jointly driven by the local chemistry and the micromechanics, and crack initiation is driven by the coupled interaction between the corrosion geometry and the micromechanics.</div><div><br></div>
|
127 |
Crash Performance of Pre-Impregnated Platelet Based Molded CompositesRebecca A Cutting (6996419) 13 August 2019 (has links)
Platelets made of slit and chopped unidirectional, carbon-fiber prepreg are becoming a popular option for use as a high performance molding compound because of their high fiber volume fraction and increased ability to flow compared to continuous fiber systems. As this molding compound is newly introduced to industry, increasing amounts of research have gone into understanding how platelets flow during molding and how components perform mechanically based on the final orientation state of platelets. This work investigates the performance of prepreg platelet molding compound (PPMC) as a viable alternative to continuous fiber systems for use with geometrically complex structural members on vehicles subjected to collisions. In doing so, the crash performance, energy absorption, and failure morphology of crush tubes made with PPMC are investigated and quantified. Then, a simulation methodology is developed to obtain manufacturing-informed performance models to predict the effect of platelet orientation state on mechanical behavior of PPMC components. This methodology uses a building block approach where each block in modeling is verified against closed-form solution (when available) and validated against experimental results. Once confidence is developed in a modeling block, the complexity of the simulation is increased until a component with full platelet orientation distribution is captured. The result is PPMC component models that are capable of predicting mechanical performance in orientation regimes that are not investigated experimentally.
|
128 |
INVESTIGATION OF SHORT FATIGUE CRACK GROWTH AND DAMAGE TOLERANCE IN ADDITIVE MANUFACTURED Ti-6Al-4VMichael C. Waddell (5930921) 17 January 2019 (has links)
<p>Aeronautical
products additively manufactured by Selective Laser Melting (SLM), are known to
have fatigue properties which are negatively impacted by porosity defects,
microstructural features and residual stresses. Little research is available
studying these phenomena with respect to the short fatigue crack growth (FCG) inconsistency
problem, the large focus being on the long FCG. This thesis seeks to add useful
knowledge to the understanding of the mechanisms for short crack growth variability
in SLM manufactured Ti-6Al-4V, with the two variables for the process
conditions and build directions investigated. An in-situ FCG investigation
using x-ray synchrotron computed micro-tomography (μXSCT) was used to visually
observe and quantify the short crack path evolution. Crack growth, deflections
and porosity interactions were noted and discussed in relation to
microstructure, build layer thickness and build layer orientation. A novel use
of in-situ energy dispersive x-ray diffraction (EDD) was able to show the
lattice strains evolving as a propagating crack moved through a small region of
interest. The results presented show the ability to reliably obtain all six elastic
strain tensor components, and interpret useful knowledge from a small region of
interest. </p>
<p> </p>
<p>There
are conflicting views in literature with respect to the damage tolerance
behavior of as built SLM manufactured Ti-6Al-4V. In the 2018 review by Agius et
al., the more prominent studies were considered with Leuders et al. showing the
highest long FCG rates for cracks parallel to the build layer and Cain et al.
showing cracks propagating through successive build layers as highest [1]–[3].
Cain et al. and Vilaro et al. report significant anisotropy in long FCG for
different build orientations whereas Edwards
and Ramulu present similar FCG behavior for three different build directions [2]–[5]. Kruth et al. concluded that for optimized
build parameters without any (detectable) pores, the building direction does
not play a significant role in the fracture toughness results [6]. All of the mentioned literature reported
martensitic microstructures and the presence
of prior
grain structures for as built SLM Ti-6Al-4V.</p>
<p> </p>
<p>No
studies to the authors knowledge have considered the short FCG of SLM
manufactured Ti‑6Al‑4V and its implications to the conflicting damage tolerance
behaviors reported in literature [1]. In this work small cross-sectional area (1.5
x 1.5
) samples in
two different build conditions of as built SLM Ti-6Al‑4V are studied. The short
FCG rate of three different build directions was considered with cracks
parallel to the build layers shown to be the most damaging. The microstructure
and build layer are shown to be the likely dominant factors in the short FCG
rate of as built Ti-6Al-4V. In terms of porosity, little impact to the
propagating short crack was seen although there is local elastoplastic behavior
around these defects which could cause toughening in the non-optimized build
parameter samples tested. The fracture surfaces were examined using a Scanning
Electron Microscope (SEM) with the results showing significant differences in
the behavior of the two build conditions. From the microindentation hardness
testing undertaken, the smooth fracture surface of the optimized sample
correlated with a higher Vickers Hardness (VH) result and therefore higher
strength. The non-optimized samples had a ‘rough’ fracture surface, a lower VH
result and therefore strength. Furthering the knowledge of short FCG in SLM
manufactured Ti-6Al-4V will have positive implications to accurately life and
therefore certify additive manufactured aeronautical products.</p>
|
129 |
MACHINE LEARNING APPROACH TO PREDICT STRESS IN CERAMIC/EPOXY COMPOSITES USING MICRO-MECHANICAL RAMAN SPECTROSCOPYAbhijeet Dhiman (5930609) 17 January 2019 (has links)
Micro-mechanical Raman spectroscopy is an excellent tool for direct stress measurements in the structure. The presence of mechanical stress changes the Raman frequency of each Raman modes compared to the Raman frequencies in absence of stress. This difference in Raman frequency is linearly related to stress induced and can be calibrated to stress by uniaxial or biaxial tension/compression experiments. This relationship is not generally linear for non-linear behavior of the materials which limits its use to experimentally study flow stress and plastic deformation behavior of the material. In this work strontium titanate ceramic particles dispersed inside epoxy resin matrix were used to measure stress in epoxy resin matrix with non-linear material behavior around it. The stress concentration factor between stress induced inside ceramic particles and epoxy resin matrix was obtained by non-linear constitutive finite element model. The results of finite element model were used for training a machine learning model to predict stress in epoxy resin matrix based on stress inside ceramic particles. By measuring stress inside ceramic particles using micro-mechanical Raman spectroscopy, the stress inside epoxy matrix was obtained by pre-determined stress concentration factor.
|
130 |
A Study on the Micro Electro-Discharge Machining of Aerospace MaterialsMoses, Mychal-Drew 01 May 2015 (has links)
Electrical Discharge Machining (EDM) is a non-traditional machining process that uses hundreds of thousands of minute electrical sparks per second to machine any electrically conductive material, no matter the hardness or how delicate it is. EDM allows a much greater range of design possibilities, unconstrained from the traditional machining processes, in which material is removed mechanically by either rotating the cutting tool or the work piece. Shapes that were impossible to machine by any other method, such as deep, precision, square holes and slots with sharp inside corners, are readily produced. It provides accurate geometries in high- aspect ratio holes and slots, blind undercuts, small holes adjacent to deep sidewalls, and complex cuts in thin, fragile parts. Micro-EDM is a growing form of manufacturing and will continue to expand within various production fields. Micro-EDM is especially attractive for the applications where the cutting time is minimal, but precision and accuracy are maximized. Micro- EDM is a non-traditional cutting process, which consistently produces ultra-precise holes with fine surface finishes and better roundness, while holding extremely close diameter tolerances. The process could be an excellent problem-solving tool for configurations that are difficult or impossible to produce using conventional machining processes. This study presents a comparative experimental investigation on the micro-EDM machinability of difficult-to-cut Ti-6Al-4V and soft brass materials. As both materials are electrically conductive, they were machinable using the micro-EDM process irrespective of their hardness. The machining performance of the two materials was evaluated based on the quality of the micro-features produced by the micro-EDM process. Both blind and through micro-holes and micro-slots were machined on brass and Ti-6Al-4V materials. The quality of micro-features was assessed based on the shape accuracy, surface finish and profile accuracy of the features. Finally, the arrays of micro-features were machined on both materials to compare the mass production capability of micro-EDM process on those materials.
|
Page generated in 0.0764 seconds