• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Plant-Based Production of Metabolites and Nanoparticles Using Potyvirus Vectors

Martí Botella, Mari Carmen 06 October 2022 (has links)
Tesis por compendio / [ES] La biotecnología de plantas actual, y la llamada agricultura molecular aspiran a convertir las plantas en "biofábricas" sostenibles para producir compuestos de valor como proteínas, metabolitos o nanopartículas de interés farmacéutico o industrial. Los virus de plantas constituyen una de las principales causas de enfermedades vegetales. Son capaces de secuestrar la maquinaria celular del huésped, y de ahí surgió la idea de reconvertir los virus de plantas en herramientas para la biotecnología de plantas como vectores de expresión transitoria y andamios para nanomateriales. Los carotenoides son metabolitos relevantes debido a sus propiedades nutricionales y beneficiosas para la salud. El primer objetivo fue manipular la ruta de biosíntesis de carotenoides para producir los muy apreciados apocarotenoides de azafrán, siendo estos los productos de la escisión de carotenoides. Para ello, se diseñó un vector derivado del virus del grabado del tabaco (TEV; género Potyvirus) manipulado para expresar unas enzimas específicas, dioxigenasas de escisión de carotenoides (CCD) de Crocus sativus y Buddleja davidii. Los análisis metabólicos de los tejidos infectados demostraron que, tras sólo dos semanas, se alcanzaron cantidades notables de crocinas y picrocrocina en plantas adultas de Nicotiana benthamiana. Sólo la expresión de CsCCD2L de C. sativus dio una acumulación en hoja de 0.2% de crocinas y 0.8% de picrocrocina en peso seco. La coexpresión de CsCCD2L con otra enzima carotenogénica, como la fitoeno sintasa de Pantoea ananatis (PaCrtB), usando el mismo vector aumentó la acumulación de crocinas al 0.35%. Pese a ser cantidades inferiores a las encontradas en fuentes naturales, este sistema mediado por virus representa el primer sistema heterólogo capaz de producir crocinas. Los compuestos fenólicos son otro amplio grupo de metabolitos secundarios en plantas muy apreciados también. Los curcuminoides son polifenoles con alta actividad antioxidante que se encuentran naturalmente en el rizoma de la cúrcuma (Curcuma longa). El segundo objetivo fue establecer un sistema para la producción heteróloga de curcuminoides utilizando vectores virales. Para ello, se desarrolló un sistema viral doble, basado en TEV y en el virus X de la patata (PVX; género Potexvirus), capaz de coexpresar diferentes enzimas biosintéticas en las mismas células. Este sistema se usó para expresar la dicétido-CoA sintasa 1 (DCS1) y la curcumina sintasa 3 (CURS3) de C. longa en plantas de N. benthamiana. El análisis metabólico confirmó la producción exitosa de curcuminoides usando dos vectores virales. Posteriormente se analizó la coexpresión de DCS1 y CURS3 usando un solo vector viral derivado de TEV, obteniendo una producción más eficiente, aumentando al doble la acumulación de curcumina. Tras un análisis temporal usando el vector TEVΔN-DCS1-CURS3, se vio que a los 11 días se lograba una acumulación máxima de 22 ± 4 µg/g peso seco. Las nanopartículas virales (VNP) también han atraído la atención en biotecnología por su uso potencial como componentes básicos para nuevos materiales en nanotecnología y medicina. Los nanoanticuerpos son los dominios variables de los anticuerpos de camélidos de sólo cadena pesada (VHH) que han ganado interés como moléculas terapéuticas por su estructura simple, tamaño pequeño y alta especificidad. El último objetivo de este trabajo fue producir VNPs decoradas con un nanoanticuerpo codificadas genéticamente. El virus del mosaico amarillo del calabacín (ZYMV; género Potyvirus) y TEV se utilizaron como andamios para producir VNPs decoradas con un nanoanticuerpo contra la proteína verde fluorescente en plantas de calabacín y N. benthamiana, respectivamente. Confirmándose el ensamblaje y unión de ambas VNPs contra GFP. En conjunto, el trabajo presentado en esta tesis contribuye al concepto de que los virus de plantas, convenientemente manipulados, pueden convertirse en poderosas herramientas en biotecnología vegetal y agricultura molecular. / [CA] La biotecnologia de plantes actual i la anomenada agricultura molecular aspiren a convertir les plantes en "biofàbriques" sostenibles per a produir compostos de valor com a proteïnes, metabòlits o nanopartícules d'interès farmacèutic o industrial. Els virus de plantes constitueixen una de les principals causes de malalties vegetals. Son capaços de segrestar la maquinària cel·lular de l'hoste, i d'ací va sorgir la idea de reconvertir els virus en eines per la biotecnologia de plantes com a vectors d'expressió transitòria i bastides per a nanomaterials. Els carotenoides són metabòlits rellevants a causa de les seues propietats nutricionals i beneficioses per a la salut. El primer objectiu va ser manipular la ruta de biosíntesi de carotenoides per a produir els valuosos apocarotenoides de safrà, sent aquests els productes de l'escissió de carotenoides. Per a això, es va dissenyar un vector derivat del virus del gravat del tabac (TEV; gènere Potyvirus) manipulat per a expressar uns enzims específics, dioxigenases d'escissió de carotenoides (CCD) de Crocus sativus i Buddleja davidii. Les anàlisis metabòliques dels teixits infectats van demostrar que, després de només dues setmanes, es van aconseguir quantitats notables de crocines i picrocrocina en plantes adultes de Nicotiana benthamiana. Només l'expressió de CsCCD2L de C. sativus va donar com a resultat una acumulació en fulla de 0.2% de crocines i 0.8% de picrocrocina en pes sec. La coexpressió de CsCCD2L amb un altre enzim carotenogènic, com la fitoé sintasa de Pantoea ananatis (PaCrtB), usant el mateix vector viral va augmentar l'acumulació de crocines al 0.35%. Malgrat ser quantitats inferiors a les trobades en fonts naturals, aquest sistema mediat per virus representa el primer sistema heteròleg capaç de produir crocines. Els compostos fenòlics són un altre ampli grup de metabòlits secundaris en plantes, també molt valuosos. Els curcuminoides són polifenols amb alta activitat antioxidant que es troben naturalment en el rizoma de la cúrcuma (Curcuma longa). El segon objectiu va ser establir un sistema per a la producció heteròloga de curcuminoides utilitzant vectors virals. Per a això, es va desenvolupar un sistema viral doble, basat en TEV i en el virus X de la creïlla (PVX; gènere Potexvirus, família Alphaflexiviridae), capaç de coexpressar diferents enzims biosintètics en les mateixes cèl·lules. Aquest sistema es va usar per a expressar la dicétid-CoA sintasa 1 (DCS1) i la curcumina sintasa 3 (CURS3) de C. longa en plantes de N. benthamiana. L'anàlisi metabòlica va confirmar la producció reeixida de curcuminoides. Posteriorment es va analitzar la coexpresió de DCS1 i CURS3 usant un sol vector viral derivat de TEV, obtenint una producció més eficient, augmentant al doble l'acumulació de curcumina. Una anàlisi temporal usant el vector TEVΔN-DCS1-CURS3 va mostrar que als 11 dies s'aconseguia una acumulació màxima de 22 ± 4 µg/g pes sec. Les nanopartícules virals (VNP) també han atret l'atenció en biotecnologia pel seu ús potencial com a components bàsics per a nous materials en nanotecnologia i medicina. Els nanoanticossos són els dominis variables dels anticossos de camèlids de només cadena pesada (VHH) que han guanyat interès com a molècules terapèutiques per la seua estructura simple, grandària xicoteta i alta especificitat. L'últim objectiu d'aquest treball va ser produir VNPs decorades amb un nanoanticos codificades genèticament. El virus del mosaic groc de la carabasseta (ZYMV; gènere Potyvirus) i TEV es van utilitzar com a bastides per a produir VNPs decorades amb un nanocos contra la proteïna verda fluorescent en plantes de carabasseta i N. benthamiana, respectivamente. Confirmant-se l'assemblatge i unió de les VNPs contra GFP. En conjunt, el treball presentat en aquesta tesi contribueix al concepte que els virus de plantes, convenientment manipulats, poden convertir-se en poderoses eines en biotecnologia vegetal i agricultura molecular. / [EN] Modern plant biotechnology and molecular farming aim to convert plants into sustainable 'biofactories' to produce valuable compounds as proteins, metabolites or nanoparticles of pharmaceutical or industrial interest. Plant viruses, constitute a major cause of plant diseases inducing devastating crop losses. Based on their ability to hijack the host cell machinery, it arose the idea of repurposing plant viruses from foes to friends into tools for plant biotechnology as transient expression vectors and scaffolds for nanomaterials. Carotenoids are relevant metabolites based on their nutritional and health-promoting properties. The first goal of this work was to manipulate the carotenoid biosynthesis pathway to produce highly appreciated saffron apocarotenoids. For this purpose, a vector derived from Tobacco etch virus (TEV; genus Potyvirus, family Potyviridae) was engineered to express specific carotenoid cleavage dioxygenase (CCD) enzymes from Crocus sativus and Buddleja davidii. Metabolic analyses of infected tissues demonstrated that, after only two weeks, remarkable amounts of crocins and picrocrocin in adult Nicotiana benthamiana plants were reached. The sole virus-driven expression of C. sativus CsCCD2L resulted in an accumulation of 0.2% of crocins and 0.8% of picrocrocin in leaf dry weight (DW). Co-expression of CsCCD2L with another carotenogenic enzyme, such as Pantoea ananatis phytoene synthase (PaCrtB), using the same viral vector increased crocin accumulation to 0.35%. Although these amounts are still far from those accumulating in natural sources, such as saffron stigma, this virus-driven system represents the first heterologous system able to produce crocins. Phenolic compounds represent another broad group of plant secondary metabolites highly appreciated for their health promoting properties. Curcuminoids are polyphenols with high antioxidant activity that are naturally found in turmeric (Curcuma longa) rhizome. The second goal of this work was to establish a system for the heterologous production of curcuminoids using viral vectors. To this aim, a double-virus vector system, based on TEV and Potato virus X (PVX; genus Potexvirus, family Alphaflexiviridae), able to co-express different biosynthetic enzymes in the same cells was developed. This system was used to express C. longa diketide-CoA synthase 1 (DCS1) and curcumin synthase 3 (CURS3) in N. benthamiana plants. Metabolic analysis confirmed the successful production of curcuminoids. Curcumin quantification indicated that sequential inoculation of both viral vectors was more efficient than co-inoculation. Co-expression of DCS1 and CURS3 was next analysed using a single viral vector derived from TEV (TEVΔN-DCS1-CURS3). This resulted in a more efficient approach as it led to a 2-fold increase in curcumin accumulation (11.7 ± 1.5 µg/g DW). A time-course analysis using the TEVΔN-DCS1-CURS3 vector showed that a maximum accumulation of 22 ± 4 µg/g DW was achieved at 11 days post-inoculation. Viral nanoparticles (VNPs) have also attracted attention in biotechnology for their potential use as building blocks for novel materials in nanotechnology and medicine. Nanobodies are the variable domains of heavy-chain (VHH) camelid antibodies that have sparked interest as therapeutic molecules due to their simple structure, small size and high specificity. The last goal of this work was to produce genetically encoded VNPs decorated with a nanobody. Zucchini yellow mosaic virus (ZYMV; genus Potyvirus, family Potyviridae) and TEV were used as scaffolds to produce VNPs decorated with a nanobody against the green fluorescent protein in zucchini (Cucurbita pepo) and N. benthamiana plants, respectively. Assembly and binding functionality of both VNPs against GFP was confirmed. Altogether, the work presented in this thesis contribute to the concept that plant viruses, conveniently manipulated, can turn into powerful tools in plant biotechnology and molecular farming. / This work was supported by grants BIO2016-77000-R, PID2020-114691RB-I00 and BIO2017-83184-R from the Spanish Ministerio de Ciencia, Innovación y Universidades (co-financed European Union FEDER funds). M.M. was the recipient of a predoctoral fellowship from the Spanish Ministerio de Educación, Cultura y Deporte (FPU16/05294). / Martí Botella, MC. (2022). Plant-Based Production of Metabolites and Nanoparticles Using Potyvirus Vectors [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/187155 / Compendio
2

Production of Recombinant Proteins with Pharmaceutical and Industrial Applications in Plants Using a Tobacco Mosaic Virus-Derived Vector

Nicolau Sanus, María 30 November 2023 (has links)
[ES] Las plantas están emergiendo como una alternativa atractiva a los sistemas convencionales de producción heteróloga, como bacterias, cultivos celulares de mamíferos, levaduras u hongos, para la síntesis de productos de alto valor, como metabolitos secundarios y proteínas. La demanda de estos productos a menudo se ve limitada por la capacidad de producción y los costos asociados. Sin embargo, utilizar las plantas como plataformas de producción ofrece ventajas en términos de accesibilidad económica, sostenibilidad, escalabilidad y la ausencia de patógenos humanos y de animales, lo que las convierte en una opción cada vez más atractiva. A pesar de las limitaciones en la capacidad de carga, la expresión génica transitoria utilizando vectores virales proporciona un método eficiente y reproducible para la producción de proteínas recombinantes en plantas, a diferencia de la transformación estable, que requiere más mano de obra y tiempo. Los vectores derivados del virus del mosaico del tabaco (TMV), particularmente aquellos en los que el gen de la proteína de la cubierta viral (CP) se reemplaza principalmente por el gen de interés, son clásicos en la biotecnología vegetal y se utilizan con frecuencia para la producción a gran escala de proteínas recombinantes. En este trabajo, nuestro primer objetivo fue optimizar un vector de TMV para mejorar la producción. La fusión traduccional del extremo amino-terminal de la CP del TMV con la proteína recombinante de interés mostró un aumento en la acumulación de la proteína verde fluorescente, interferón alfa-2a y un nanobody contra la proteína Spike del SARS-CoV-2 en hojas de Nicotiana benthamiana. La inserción de un sitio de clivaje específico, basado en las proteasas de inclusión nuclear (NIaPro) de dos potyvirus, junto con la expresión de las proteasas correspondientes, además de la producción de la proteína recombinante madura, aumentó aún más la acumulación de las proteínas recombinantes mencionadas anteriormente. En segundo lugar, nuestro objetivo fue establecer estrategias para producir proteínas recombinantes de interés industrial y farmacéutico en N. benthamiana utilizando un vector de TMV. Logramos producir grandes cantidades de una xilanasa termofílica, activa en condiciones extremas de temperatura y pH alcalino, en N. benthamiana utilizando un vector de TMV. La enzima que se acumuló rápidamente en los tejidos de la planta se dirigió al apoplasto, lo que facilitó enormemente la purificación y evitó cualquier efecto adverso en el crecimiento de la planta. Se demostró que esta enzima producida en planta es útil para la producción de xilooligosacáridos probióticos. También produjimos grandes cantidades de una glucosa oxidasa (GOX) modificada en hojas de N. benthamiana utilizando un vector de TMV. La GOX producida en planta, que también se purificó fácilmente a partir de fluidos apoplásticos, exhibió potentes propiedades antimicrobianas contra Staphylococcus aureus y Escherichia coli. / [CA] Les plantes están emergint com una alternativa atractiva als sistemes convencionals de producció heteròloga, com ara bacteries, cultius cel·lulars de mamífers, llevats o fongs, per a la síntesi de productes d'alt valor, com son metabòlits secundaris i proteïnes d'interés industrial i farmacéutic. La demanda d'aquests productes sovint es veu limitada per la capacitat de producció i els costos associats. No obstant això, utilitzar les plantes com a plataformes de producció ofereix avantatges en termes d'accessibilitat econòmica, sostenibilitat, escalabilitat i l'absència de patògens humans i animals, la qual cosa les converteix en una opció cada vegada més atractiva. Malgrat les limitacions en la capacitat de càrrega, l'expressió gènica transitoria mitjançant vectors virals proporciona un mètode eficient i reproducible per a la producció de proteïnes recombinants en plantes, a diferència de la transformació estable, que requereix més mà d'obra i temps. Els vectors derivats del virus del mosaic del tabac (TMV), particularment aquells en els quals el gen de la proteïna de la coberta viral (CP) és principalment reemplaçat pel gen d'interès, són clàssics en la biotecnologia vegetal i s'utilitzen sovint per a la producció a gran escala de proteïnes recombinants. En aquest treball, el nostre primer objectiu va ser optimitzar un vector de TMV per a millorar la producció. La fusió traduccional de l'extrem amino-terminal de la CP del TMV amb la proteïna recombinant d'interès va mostrar un augment en l'acumulació de la proteïna verda fluorescent, interferó alfa-2a i un nanobody contra la proteïna Spike del SARS-CoV-2 en fulles de Nicotiana benthamiana. La inserció d'un lloc de tall específic, basat en les proteases d'inclusió nuclear (NIaPro) de dos potivirus, juntament amb l'expressió de les proteases corresponents, a més de la producció de la proteïna recombinant madura, va augmentar encara més l'acumulació de les proteïnes recombinants esmentades anteriorment. En segon lloc, el nostre objectiu va ser establir estratègies per a produir proteïnes recombinants d'interés industrial i farmacèutic en N. benthamiana utilitzant un vector de TMV. Vam aconseguir produir grans quantitats d'una xilanasa termofílica, activa en condicions extremes de temperatura i pH alcalí, en N. benthamiana utilitzant un vector de TMV. El enzim que es va acumular ràpidament en els teixits de la planta es va dirigir a l'apoplast, la qual cosa va facilitar enormement la purificació i va evitar qualsevol efecte advers en el creixement de la planta. Es va demostrar que aquesta enzima produïda en planta és útil per a la producció de xilooligosacàrids probiòtics. També vam produir grans quantitats d'una glucosa oxidasa (GOX) modificada en fulles de N. benthamiana utilitzant un vector de TMV. La GOX produïda en planta, que també es va purificar fàcilment a partir de fluids apoplàstics, va exhibir potents propietats antimicrobianes contra Staphylococcus aureus i Escherichia coli. / [EN] Plants are emerging as an attractive alternative to conventional heterologous production systems, including bacteria, mammalian cell cultures, yeast, or fungi, for the synthesis of high-value products, such as secondary metabolites and proteins. The demand for these products is often limited by production capacity and associated costs. However, using plants as production platforms offers advantages in terms of affordability, sustainability, scalability, and the absence of human and livestock pathogens, making them an increasingly appealing choice. Despite limitations in cargo capacity, transient gene expression using viral vectors provides an efficient and reproducible method for producing recombinant proteins in plants, unlike stable transformation, which is more labor- intensive and time-consuming. Vectors derived from tobacco mosaic virus (TMV), particularly those in which the viral coat protein (CP) gene is mostly replaced with the gene of interest, are classic in plant biotechnology and frequently use for large-scale production of recombinant proteins. In this work, we first aimed to optimize a TMV vector to improve production. Translational fusion of the amino- terminal end of TMV CP to the recombinant protein of interest led to increased accumulation of the green fluorescent protein, interferon alfa-2a and a nanobody against the Spike protein of SARS-CoV-2 in Nicotiana benthamiana leaves. Insertion of a specific cleavage site, based on the nuclear inclusion a proteases (NIaPro) form two potyviruses, along expression of the cognate proteases led to, in addition to production of the mature recombinant protein, a further increase in the accumulation of the aforementioned recombinant proteins. Second, we aimed to set up strategies to produce recombinant proteins of industrial and pharmaceutical interest in N. benthamiana using a TMV vector. We successfully produced large amounts of a thermophilic xylanase, active under extreme temperature and alkaline pH conditions, in N.benthamiana using a TMV vector. The enzyme that accumulated rapidly in plant tissues was targeted the apoplast, which enormously facilitated purification, and avoided any adverse effect on plant growth. This plant-made enzyme was shown to be useful for the production of probiotic xylooligosaccharides. We also produced large amounts of an engineered glucose oxidase (GOX) in N. benthamiana leaves using a TMV vector. The plant-made GOX that was also easily purified from apoplastic fluids exhibited potent antimicrobial properties against Staphylococcus aureus and Escherichia coli. / This work was supported Generalitat Valenciana, grant INNEST/2021/7 from Agència Valenciana de la Innovació, and by grant PID2020-114691RB-I00 from the Spanish Ministerio de Ciencia e Innovación, through the Agencia Estatal de Investigación (co-financed European Regional Development Fund), and by the Bio Based Industries Joint Undertaking, under the European Union’s Horizon 2020 research and innovation program (Project WOODZYMES, Grant Agreement H2020-BBI- JU-792070). M.N.-S. is the recipient of a predoctoral contract from the Spanish Ministerio de Ciencia e Innovación (PRE2018-084771). / Nicolau Sanus, M. (2023). Production of Recombinant Proteins with Pharmaceutical and Industrial Applications in Plants Using a Tobacco Mosaic Virus-Derived Vector [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/200381

Page generated in 0.078 seconds