• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 22
  • 10
  • 8
  • 7
  • 6
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 127
  • 127
  • 22
  • 15
  • 14
  • 13
  • 13
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Transformação genética de embriões somáticos de soja [Glycine max (L.) Merr.] utilizando o bombardeamento e sistema Agrobacterium de maneira integrada

Wiebke, Beatriz January 2005 (has links)
O objetivo do presente trabalho foi otimizar o sistema de transformação genética de embriões somáticos de soja [Glycine max (L.) Merr.] utilizando a biolística e o sistema Agrobacterium de maneira integrada. Os antibióticos, adicionados ao meio de cultura para supressão da bactéria após a transferência do transgene, foram o alvo do estudo. Inicialmente, comparou-se o efeito de diferentes tratamentos com antibióticos sobre o tecido embriogênico de soja e sua eficiência na supressão da linhagem LBA4404 de Agrobacterium tumefaciens durante o processo de transformação. A carbenicilina (500 mg/l) apresentou efeitos diferentes sobre o tecido vegetal das duas cultivares testadas. Os tecidos embriogênicos da cv. IAS5 não apresentaram diferenças significativas em relação ao controle, enquanto que a proliferação dos embriões somáticos da cv. Bragg foi três vezes maior com a adição deste antibiótico ao meio de cultura. Contudo, a presença da carbenicilina nas duas concentrações testadas (500 e 1000 mg/l) não foi eficiente para supressão de Agrobacterium. Por outro lado, nos tratamentos com cefotaxima sozinha (350 e 500 mg/l), ou cefotaxima (250 mg/l) + vancomicina (250 mg/l) esta bactéria foi completamente suprimida da superfície dos embriões somáticos após 49 dias de tratamento. No entanto, enquanto a presença de cefotaxima, em qualquer concentração, foi prejudicial à sobrevivência do tecido embriogênico, a combinação de cefotaxima + vancomicina não afetou significativamente os embriões somáticos de soja até os 63 dias de tratamento. Portanto, os resultados indicam que o tratamento com cefotaxima + vancomicina por um período de 49 - 63 dias é o mais adequado para a transformação genética de soja, por suprimir Agrobacterium e apresentar mínimos efeitos sobre o tecido embriogênico. Por fim, conjuntos de embriões somáticos de soja foram transformados e tratados com a combinação recomendada de antibióticos para avaliação da eficiência do método na obtenção de transformantes estáveis. Foram obtidos 48 e 232 clones higromicina-resistentes para Bragg e IAS5, respectivamente. Para cv. Bragg, 26 plantas foram obtidas de um único clone, enquanto 580 plantas foram regeneradas de 105 clones da cv. IAS5. As plantas transgênicas eram férteis e morfologicamente normais. A presença do transgene no genoma destas plantas foi confirmada por análises moleculares. Portanto, a adequação dos antibióticos permitiu o desenvolvimento de um método de transformação altamente eficiente para soja. Os resultados do presente trabalho constituem o primeiro registro (1) do efeito de antibióticos sobre tecidos de soja ou de leguminosas e (2) de obtenção de transformantes estáveis de soja utilizando a biolística e o sistema Agrobacterium de maneira integrada.
62

Transformação genética de embriões somáticos de soja [Glycine max (L.) Merr.] utilizando o bombardeamento e sistema Agrobacterium de maneira integrada

Wiebke, Beatriz January 2005 (has links)
O objetivo do presente trabalho foi otimizar o sistema de transformação genética de embriões somáticos de soja [Glycine max (L.) Merr.] utilizando a biolística e o sistema Agrobacterium de maneira integrada. Os antibióticos, adicionados ao meio de cultura para supressão da bactéria após a transferência do transgene, foram o alvo do estudo. Inicialmente, comparou-se o efeito de diferentes tratamentos com antibióticos sobre o tecido embriogênico de soja e sua eficiência na supressão da linhagem LBA4404 de Agrobacterium tumefaciens durante o processo de transformação. A carbenicilina (500 mg/l) apresentou efeitos diferentes sobre o tecido vegetal das duas cultivares testadas. Os tecidos embriogênicos da cv. IAS5 não apresentaram diferenças significativas em relação ao controle, enquanto que a proliferação dos embriões somáticos da cv. Bragg foi três vezes maior com a adição deste antibiótico ao meio de cultura. Contudo, a presença da carbenicilina nas duas concentrações testadas (500 e 1000 mg/l) não foi eficiente para supressão de Agrobacterium. Por outro lado, nos tratamentos com cefotaxima sozinha (350 e 500 mg/l), ou cefotaxima (250 mg/l) + vancomicina (250 mg/l) esta bactéria foi completamente suprimida da superfície dos embriões somáticos após 49 dias de tratamento. No entanto, enquanto a presença de cefotaxima, em qualquer concentração, foi prejudicial à sobrevivência do tecido embriogênico, a combinação de cefotaxima + vancomicina não afetou significativamente os embriões somáticos de soja até os 63 dias de tratamento. Portanto, os resultados indicam que o tratamento com cefotaxima + vancomicina por um período de 49 - 63 dias é o mais adequado para a transformação genética de soja, por suprimir Agrobacterium e apresentar mínimos efeitos sobre o tecido embriogênico. Por fim, conjuntos de embriões somáticos de soja foram transformados e tratados com a combinação recomendada de antibióticos para avaliação da eficiência do método na obtenção de transformantes estáveis. Foram obtidos 48 e 232 clones higromicina-resistentes para Bragg e IAS5, respectivamente. Para cv. Bragg, 26 plantas foram obtidas de um único clone, enquanto 580 plantas foram regeneradas de 105 clones da cv. IAS5. As plantas transgênicas eram férteis e morfologicamente normais. A presença do transgene no genoma destas plantas foi confirmada por análises moleculares. Portanto, a adequação dos antibióticos permitiu o desenvolvimento de um método de transformação altamente eficiente para soja. Os resultados do presente trabalho constituem o primeiro registro (1) do efeito de antibióticos sobre tecidos de soja ou de leguminosas e (2) de obtenção de transformantes estáveis de soja utilizando a biolística e o sistema Agrobacterium de maneira integrada.
63

Regulation of hyu gene expression in Agrobacterium tumefaciens strains RU-AE01 and RU-OR

Jiwaji, Meesbah January 2007 (has links)
Several Agrobacterium tumefaciens strains have been isolated for their ability to produce D-amino acids from D, L-substituted hydantoins. The optically pure D-amino acids are used in the synthesis of pharmaceuticals, as food additives and as insecticides. This hydrolysis of D, L-substituted hydantoins is catalysed by two hydantoin-hydrolyzing enzymes, an hydantoinase and an N-carbamyl amino acid amidohydrolase. While the hydantoin-hydrolyzing enzymes have been studied in detail, the mechanisms that control expression of the hyu genes have not. The research reported in this work elucidates some of the mechanisms involved in the regulation of the hyu genes in A. tumefaciens strains. The hydantoin-hydrolyzing enzyme activity from the environmental isolate A. tumefaciens RU-AE01 was characterized. A broad host range vector for the simultaneous analysis of divergent promoters was constructed. The promoter regions responsible for the activation of transcription of hyuH and hyuC were identified by deletion analysis. It was proposed that transcription of hyuH was activated by a putative σ[superscript 54]-dependent promoter or a putative σ[superscript 70]-dependent promoter identified upstream of the hyuH gene. The hyuC gene was activated by a putative σ[superscript 70]-dependent promoter identified upstream of the hyuC gene. The regulation of hydantoinase and N-carbamyl amino acid amidohydrolase enzyme activity was compared to the regulation of transcription from the RU-AE01 hyuH-hyuC region. Expression of the hydantoin-hydrolyzing enzymes was regulated by induction which correlated with reporter enzyme expression from the hyuH and hyuC promoter regions. However, the expression of the hydantoin-hydrolyzing enzymes was also regulated by nitrogen catabolite repression (NCR). This did not correlate to the reporter gene expression of the hyuH promoter region but did compare to the reporter gene expression of the hyuC promoter region. This suggested that NCR of hyuH was at the post-translational level whereas NCR of the hyuC promoter was at the transcriptional level. Pathways involved in the regulation of the hyu genes were characterized. The production of the hydantoin-hydrolyzing enzymes in both A. tumefaciens strains RU-AE01 and RU-OR were regulated by proteins involved in the global ntr pathway. The levels of the hydantoin-hydrolyzing enzymes in strain RU-AE01 were elevated in the presence of increased levels of NtrB and NtrC illustrating the importance of the ntr pathway in the regulation of the levels of the hydantoin-hydrolyzing enzymes. Similarly, in RU-OR the presence of exogenous NtrB and NtrC elevated levels of N-carbamyl amino acid amidohydrolase activity. However, the levels of hydantoinase enzyme activity in strain RU-OR were elevated in the presence of NtrC alone. In addition, the presence of a His6-tagged NtrC molecule abolished the elevation in the levels of the hydantoinase but not the N-carbamyl amino acid amidohydrolase enzyme activity in strain RU-OR. This suggests that NtrC has a direct role in the regulation of the expression of hyuH in RU-OR. In addition, it indicates that the hyu genes in the two A. tumefaciens strains RU-AE01 and RU-OR are different. The presence of the RU-AE01 hyuH-hyuC fragment caused a dramatic increase in the hydantoin-hydrolyzing enzyme activity in strain RU-OR but not strain RU-AE01. This implied the incidence of a possible repressor protein in RU-OR, which is titrated out by the presence of the RU-AE01 hyuH-hyuC fragment. Protein-DNA binding assays suggest that this putative repressor may be 38 kDa in RU-OR cells.
64

Wound induced plant phenolic compounds and virulence gene expression in Agrobacterium species

Spencer, Paul Anthony January 1991 (has links)
Crown gall disease of plants is caused by introduction of foreign DNA into susceptible plant cells by strains of Agrobacterium tumefaciens. The expression of bacterial virulence genes is triggered by chemicals present in plant wound exudates. The exudates contain a number of phenolic compounds which act as chemical signals inducing expression of a number of genes directing the DNA transfer process. These are the virulence or vir genes, and vir::lac reporter gene fusions have been widely used to assay vir gene induction in Agrobacterium tumefaciens strains. Using such strains to monitor vir gene expression, Stachel et al. (1985) isolated from Nicotiana tabacum two active acetophenones: 3,5-dimethoxy-4-hydroxyacetophenone, ("acetosyringone" or AS), and α-hydroxy-3,5-dimethoxy-4-hydroxy-acetophenone, ("hydroxyacetosyringone" or HO-AS). However, in vitro assay results suggested that other more common compounds also exhibited activity (Spencer and Towers, 1988). This analysis of structure-activity relationships of induced vir expression in A. tumefaciens was presented in a previous thesis (Paul Spencer, M.Sc. thesis). The results revealed that a variety of commonly occurring plant phenolic compounds were capable of activating vir genes. In addition to the acetophenones, a variety of benzoic and cinnamic acid derivatives, and even a few chalcones of appropriate ring substitution were active. This thesis reports the isolation and identification of a number of these compounds in plant wound exudates. Some Agrobacterium tumefaciens strains are restricted in host range to certain grapevine cultivars. Subsequent to the development of a convenient and sensitive plate-bioassay method, a strongly active component in grapevine wound exudates was purified. A newly described vir-inducing phenolic compound was isolated from a number of Vitis cultivars using gel filtration, thin layer and high pressure liquid chromatographies. This was identified as syringic acid methyl ester (3,5-dimethoxy-4-hydroxybenzoic acid, methyl ester), using mass spectrometry. However, the presence of this compound in grapevine wound exudates does not provide a simple explanation for host range limitation of grapevine strains since it induces vir gene expression in both limited and wide host range strains of A. tumefaciens. Interestingly, neither AS nor HO-AS were present in grapevine-derived extracts. A convenient polyamide column chromatographic method was subsequently developed to permit rapid purification of plant-derived vir gene inducing mixtures, which were detected using the newly developed plate bioassay. Derivatized polyamide fractions were then analysed by combined gas chromatography-mass spectrometry (GC-MS). GC-MS proved to be an ideal means for the identification of the phenolic components in partially purified extracts. Examination of wound exudates from a range of host and non-host species revealed that the production of the acetophenones is restricted to members of the Solanaceae. Some experiments focussed on the biosynthetic precursors of the acetophenones in Nicotiana species. Wound exudates of the majority of species belonging to other plant families contained benzaldehydes and/or benzoic and cinnamic acid derivatives. The induction of virE gene expression was examined in the related Agrobacterium species, A. rhizogenes. To do this, the virE::lacZ gene fusion plasmid pSM358cd was introduced into A. rhizogenes A4 by triparental mating and the strain "A4/pSM358cd" was used to analyze vir activation. Acetophenones, chalcones, benzaldehydes, and benzoic and cinnamic acid derivatives were found to activate vir genes in A. rhizogenes. / Science, Faculty of / Botany, Department of / Graduate
65

IZOLACE TRANSGENNÍCH ROSTLIN NICOTIANA TABACUM A SILENE VULGARIS / ISOLATION OF TRANSGENIC PLANTS NICOTIANA TABACUM AND SILENE VULGARIS

Kováčová, Viera January 2010 (has links)
This project is focused on transformation of Silene vulgaris mediated by Agrobacterium tumefaciens and A. rhizogenes. S. vulgaris is a good model plant to study gynodioecy, an evolutionary step from bisexuality to dioecy. Gynodioecious plants form in some individuals bisexual flowers, while the others possess only female flowers. The aim of this research is do develop a technique to introduce foreign genes into this plant to study its developmental consequences. Using A. rhizogenes we successfuly prepared hairy root cultures, which unfortunately do not form shoot regenerants. We have prepared a protocol to induce plant regenerants from S. vulgaris leaf fragments. The first results do not confirm that A. tumefaciens infected plant regenerants harbor reporter transgenes. We used Nicotiana tabacum as a positive control.
66

Expression of human protein C in transgenic Nicotiana tabacum

Piché, Christian. January 1994 (has links)
No description available.
67

Using a Mammalian Virus to Create Plants for Site-Specific Transgene Insertion

Zabaronick, William John 06 June 2001 (has links)
A novel strategy for site-specific DNA transformation of plants has been proposed and the first component of the system developed. The proposed method overcomes the limitations of current techniques by providing a specific integration site for the insertion of transgenes using features of the adeno-associated virus (AAV) life cycle. In the absence of helper virus, AAV integrates into a specific location on human chromosome 19, the AAVS1 locus. The sequence for AAV integration was introduced into the model plant Arabidopsis thaliana using Agrobacterium tumefaciens-mediated transformation. A portion of the human AAVS1 sequence, including the Rep binding site (RBS) and terminal resolution site (TRS), was cloned between T-DNA borders of the Agrobacterium Ti plasmid. The reporter gene, b-glucuronidase (GUS) was inserted proximal to AAVS1 in the plasmid for use in screening for the presence of T-DNA. In addition, it will serve as an indicator of the expression level expected for transgene inserted into AAVS1 by recombinant AAV. PCR amplification, dideoxy sequencing, GUS expression assays and genomic Southern blots were performed to examine putative transgenic plants for the presence of the AAVS1 sequence. / Master of Science
68

Les hémoglobines tronquées de Agrobacterium tumefaciens C58

Labarre, Marie 12 April 2018 (has links)
Résumé Les hémoglobines tronquées (Hbtrs) sont retrouvées chez plusieurs organismes et leurs fonctions sont encore inconnues pour la plupart. Les Hbtrs du pathogène de plante Agrobacterium tumefaciens C58 ont été inactivées pour vérifier leurs implications dans la production de tumeur chez les plantes. Les expériences ont montré que les souches mutantes pour les Hbtrs AtuHb2 et AtuHb3 étaient capables d'induire la production de tumeur chez la plante Kalanchoe daigremontiana. La protéine recombinante AtuHb2 a été caractérisée par spectroscopie d'absorption et de résonance Raman. L'analyse, par spectroscopie d'absorption, montre que la protéine est hexacoordonnée dans la forme ferrique et ferreuse, qu'il est possible pour AtuHb2 de former des complexes stables avec les ligands CO, CN- et NO, mais pas avec l'O2 et que le complexe formé entre la forme ferreuse et le NO est pentacoordonné. L'analyse par spectroscopie de résonance Raman a montré que le ligand CO est peu stabilisé
69

Characterization of the VtlR regulons in Brucella abortus and Agrobacterium tumefaciens

Budnick, James Andrew 25 April 2019 (has links)
Brucella abortus and Agrobacterium tumefaciens are pathogenic bacteria that infect animals and plants, respectively. These bacteria are genetically similar and are found within the same Class, Alphaproteobacteria, and Order, Rhizobiales, of the domain Eubacteria; however, they survive and replicate in vastly different environmental niches. In Order to adapt to different environments, bacteria utilize several mechanisms of gene regulation to tightly control gene expression. Two of these mechanisms include transcriptional regulators and small regulatory RNAs (sRNAs), which can activate and repress gene expression through various interactions with DNA, mRNA, and proteins. A well-conserved transcriptional regulator among the Rhizobiales is VtlR, a virulence-associated transcriptional LysR regulator. The objectives of this dissertation were three fold: 1) characterize the known regulon of VtlR in B. abortus with regards to gene regulatory function and virulence, 2) determine the regulon of VtlR in A. tumefaciens and define the mechanism by which this regulation occurs, and 3) define the role of an ABC-type transport system indirectly regulated by VtlR in B. abortus that putatively imports the non-proteinogenic amino acid gamma-aminobutyric acid (GABA). VtlR was characterized in B. abortus as a virulence-associated transcriptional regulator that directly activates four genes: the sRNA AbcR2, and the three small hypothetical proteins BAB1_0914, BAB2_0512, and BAB2_0574; and deletion of vtlR led to a significant defect in the ability of B. abortus to cause infection in vitro and in vivo. Since dysregulation of abcR2 alone could not account for the defect in virulence, it was hypothesized that one or all three hypothetical proteins could be responsible for a virulence phenotype observed in ΔvtlR. This turned out to not be the case, as a deletion of the entire VtlR regulon displayed no difference in virulence compared to the parental strain. Further characterization of the small hypothetical proteins is outlined in Chapter 2 and the data revealed bona fide translation of each small protein, and the deletion strain of the VtlR regulon displayed a growth defect when grown in the presence of the sugar fucose. This phenotype was subsequently observed in ΔvtlR as well. This led to the identification of a putative fucose transport and metabolism locus in B. abortus that has yet to be studied. In A. tumefaciens, VtlR is necessary for proper attachment to plant cells and biofilm formation and regulates over 200 genes, significantly more than the four genes VtlR regulates in B. abortus. The mechanism by which this occurs was unknown, and the relationship between VtlR and AbcR1 or AbcR2 was uncharacterized. The data in Chapter 3 outline the VtlR network by showing that VtlR regulation of myriad genes in A. tumefaciens is primarily indirect via the direct regulation of a few sRNAs. This direct interaction was shown experimentally and a VtlR binding box was identified in the A. tumefaciens genome. This project outlines the divergence of a regulatory element between phylogenetically related organisms that occupy different environmental niches. The AbcR sRNAs are conserved throughout the Rhizobiales and regulate numerous ABC-type transport systems within these bacteria. In A. tumefaciens, one of these transport systems specifically transports the amino acds proline and GABA. B. abortus contains homologs of this system, which led to the hypothesis that the brucellae may also transport GABA but for a yet unknown purpose. The data in Chapter 4 revealed that B. abortus also transports GABA in vitro and this transport is under the regulation of AbcR1 and AbcR2. This transport was increased under extreme nutrient limitations and was uninhibited by the presence of other amino acids. Metabolic studies showed GABA is not utilized by B. abortus under aerobic conditions, and transcriptomic data revealed increased expression of several loci in the presence of GABA. Altogether, this study uncovers a putative signaling role for the amino acid GABA that has been understudied in bacterial pathogens that infect animal hosts. Overall, the work presented in this dissertation is focused on further elucidating the biological role of downstream regulatory targets of both VtlR and the sRNAs AbcR1 and AbcR2 in the related organisms Brucella abortus and Agrobacterium tumefaciens. Findings show that while there are similarities between the two systems, there are also many differences that may be attributed to the vastly different lifestyles of each organism. / Doctor of Philosophy / Brucella abortus and Agrobacterium tumefaciens are two highly related bacterial pathogens that infect mammals and plants, respectively. Although genetically related, both organisms survive and replicate in vastly different environmental niches with one living in the soil (i.e., A. tumefaciens) and the other living within immune cells of the infected host (i.e., B. abortus). In Order to quickly adapt to changing environmental conditions, the bacteria must rapidly control gene expression through multiple regulatory mechanisms. The works presented in this dissertation will focus on further characterizing one of these regulatory systems and comparing the homologous systems shared by B. abortus and A. tumefaciens. This includes uncovering a putative sugar transport and metabolism system, as well as discovering the potential for host-pathogen signaling via the well-studied neurotransmitter GABA.
70

Regeneration and Transformation of Impatiens walleriana Using Cotyledonary Node Culture

Baxter, Aaron Jacob 16 January 2006 (has links)
Impatiens walleriana, commonly grown as a herbaceous annual, is susceptible to Impatiens Necrotic Spot Virus (INSV). A lack of resistant cultivars leaves growers with the sole option of destroying infected plants before INSV spreads throughout their entire crop. Therefore, the introduction of INSV resistant cultivars would have the potential to save Impatiens growers a substantial amount of money. Virus resistance has been successfully conveyed in several crops by insertion of pathogen DNA into the host plant. One method of generating transgenic plants involves the use of Agrobacterium-mediated gene transfer. A commonly used technique involves transformation of explant tissue and subsequent regeneration in vitro under aseptic conditions. However, prior to our research there was no regeneration protocol suitable for Agrobacterium-mediated transformation of Impatiens walleriana available. Herein we report the development of a new method for regeneration of Impatiens walleriana using cotyledonary node culture. Using this technique, four regeneration media amended with 1, 3, 5, or 7µM of thidiazuron were evaluated for their ability to induce de novo shoot production in cotyledonary node explants, and evaluated for number of shoots produced per explant. Results showed a significantly greater frequency of regeneration and number of shoots per explant using media amended with 1µM of thidiazuron. This technique has shown to be repeatable and is not susceptible to ploidy instability. Unfortunately, damage to the cotyledonary node explants during Agrobacterium inoculation and transfection prevented regeneration of transformed shoots in several attempts. However, transient GFP expression after transfection of shoot pads derived from cotyledonary nodes with Agrobacterium strain LBA 4404 containing plasmid pHB2829 with nptII and S-GFP was obtained, indicating the possibility for this regeneration protocol to derive stably transformed Impatiens with INSV resistance. / Master of Science

Page generated in 0.0983 seconds