• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 41
  • 41
  • 22
  • 21
  • 14
  • 12
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

A Preliminary Controller Design for Drone Carried Directional Communication System

AL-Emrani, Firas 08 1900 (has links)
In this thesis, we conduct a preliminary study on the controller design for directional antenna devices carried by drones. The goal of the control system is to ensure the best alignment between two directional antennas so as to enhance the performance of air-to-air communication between the drones. The control system at the current stage relies on the information received from GPS devices. The control system includes two loops: velocity loop and position loop to suppress wind disturbances and to assure the alignment of two directional antennae. The simulation and animation of directional antennae alignment control for two-randomly moving drones was developed using SIMULINK. To facilitate RSSI-based antenna alignment control to be conducted in the future work, a study on initial scanning techniques is also included at the end of this thesis.
22

A Computational and Design Characterization for the Flowfield behind a C-130 during an Unmanned Aerial Vehicle Docking

Robertson, Cole D. January 2019 (has links)
No description available.
23

Attitude Estimation and Maneuvering for Autonomous Obstacle Avoidance by Miniature Air Vehicles

Hall, James K. 22 December 2008 (has links) (PDF)
Utilizing the Euler-Rodrigues symmetric parameters (attitude quaternion) to describe vehicle orientation, we develop a multiplicative, nonlinear (extended) variation of the Kalman filter (MEKF) to fuse data from low-cost sensors. The sensor suite is comprised of gyroscopes, accelerometers, and a GPS receiver. In contrast to the common approach of using the complete vehicle attitude as the quantities to be estimated, our filter states consist of the three components of an attitude error vector. In parallel with the time update of the attitude error estimate, we utilize the gyroscope measurements for the time propagation of the attitude quaternion. The accelerometer and the GPS sensors are used independently for the measurement update portion of the Kalman filter. For both sensors, a vector arithmetic approach is used to determine the attitude error vector. Following each measurement update, a multiplicative reset operation moves the attitude error information from the filter state into the attitude estimate. This reset operation utilizes quaternion algebra to implicitly maintain the unity-norm constraint. We demonstrate the effectiveness of our attitude estimation algorithm through flight simulations and flight tests of aggressive maneuvers such as loops and small-radius circles. We implement an approach to aerobatic maneuvering for miniature air vehicles (MAVs) using time-parameterized attitude trajectory generation and an associated attitude tracking control law. We designed two methodologies, polynomial and trigonometric, for creating functions that specify pitch and roll angles as a function of time. For both approaches, the functions are constrained by the maneuver boundary conditions of aircraft position and velocity. We construct a trajectory tracking feedback control law to regulate aircraft orientation throughout the maneuvers. The trajectory generation algorithm was used to construct several maneuvers and trajectory tracking control law successfully executed the maneuvers in the flight simulator. In addition to the simulation results, MAV flight tests verified the performance of the maneuver generation and control. To achieve obstacle avoidance maneuvering, the time parameterized trajectories were converted to spatially parameterized paths, which allowed for inertial reference frame position error to be included in the control law feedback loop. We develop a novel method to achieve the spatial parameterization using a prediction and correction approach. Additionally, the first derivative of position of the desired path is modified using a corrective parameter scheme prior to being used in the control. Using the path position error and the corrected derivative, we utilize a unit-norm quaternion framework to implement a proportional-derivative (PD) control law. This control law was demonstrated in simulation and hardware on maneuvers designed specifically to avoid obstacles, namely the Immelmann and the Close-Q, as well as a basic loop.
24

Aircraft Flight Data Processing And Parameter Identification With Iterative Extended Kalman Filter/Smoother And Two-Step Estimator

Yu, Qiuli 14 December 2001 (has links)
Aircraft flight test data are processed by optimal estimation programs to estimate the aircraft state trajectory (3 DOF) and to identify the unknown parameters, including constant biases and scale factor of the measurement instrumentation system. The methods applied in processing aircraft flight test data are the iterative extended Kalman filter/smoother and fixed-point smoother (IEKFSFPS) method and the two-step estimator (TSE) method. The models of an aircraft flight dynamic system and measurement instrumentation system are established. The principles of IEKFSFPS and TSE methods are derived and summarized, and their algorithms are programmed with MATLAB codes. Several numerical experiments of flight data processing and parameter identification are carried out by using IEKFSFPS and TSE algorithm programs. Comparison and discussion of the simulation results with the two methods are made. The TSE+IEKFSFPS combination method is presented and proven to be effective and practical. Figures and tables of the results are presented.
25

Acceleration based manoeuvre flight control system for unmanned aerial vehicles

Peddle, Iain K. 12 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: A strategy for the design of an effective, practically feasible, robust, computationally efficient autopilot for three dimensional manoeuvre flight control of Unmanned Aerial Vehicles is presented. The core feature of the strategy is the design of attitude independent inner loop acceleration controllers. With these controllers implemented, the aircraft is reduced to a point mass with a steerable acceleration vector when viewed from an outer loop guidance perspective. Trajectory generation is also simplified with reference trajectories only required to be kinematically feasible. Robustness is achieved through uncertainty encapsulation and disturbance rejection at an acceleration level. The detailed design and associated analysis of the inner loop acceleration controllers is carried out for the case where the airflow incidence angles are small. For this case it is shown that under mild practically feasible conditions the inner loop dynamics decouple and become linear, thereby allowing the derivation of closed form pole placement solutions. Dimensional and normalised non-dimensional time variants of the inner loop controllers are designed and their respective advantages highlighted. Pole placement constraints that arise due to the typically weak non-minimum phase nature of aircraft dynamics are developed. A generic, aircraft independent guidance control algorithm, well suited for use with the inner loop acceleration controllers, is also presented. The guidance algorithm regulates the aircraft about a kinematically feasible reference trajectory. A number of fundamental basis trajectories are presented which are easily linkable to form complex three dimensional manoeuvres. Results from simulations with a number of different aircraft and reference trajectories illustrate the versatility and functionality of the autopilot. Key words: Aircraft control, Autonomous vehicles, UAV flight control, Acceleration control, Aircraft guidance, Trajectory tracking, Manoeuvre flight control. / AFRIKAANSE OPSOMMING: ’n Strategie vir die ontwerp van ’n effektiewe, prakties haalbaar, robuuste, rekenkundig effektiewe outoloods vir drie dimensionele maneuver vlugbeheer van onbemande vliegtuie word voorgestel. Die kerneienskap van die strategie is die ontwerp van oriëntasie-onafhanklike binnelus-versnellingbeheerders. Hierdie beheerders stel die navigasie buitelus in staat om die voertuig as ’n puntmassa met ’n stuurbare versnellingsvektor te beskou. Trajekgenerasie is ook vereenvoudig deurdat verwysingstrajekte slegs kinematies haalbaar hoef te wees. Robuustheid word verkry deur onsekerhede en versteuringsverwerping op ’n versnellingsvlak te hanteer. Die gedetaileerde ontwerp en saamhangende analise van die binnelus versnellingsbeheerders word uitgevoer vir die geval waar die invalshoeke klein is. Dit word aangetoon dat, onder praktiese omstandighede, die binnelus dinamika ontkoppel kan word en lineêr word, wat die afleiding van geslotevorm poolplasingoplossings toelaat. Dimensionele en genormaliseerde, nie-dimensionele tydvariante van die binnelusbeheerders word ontwerp en hul onderskeidelike voordele word uitgewys. Poolplasing beperkings, wat ontstaan as gevolg van die tipiese geringe nie-minimum fasegedrag van voertuigdinamika, word ontwikkel. ’n Gepaste generiese, voertuig onafhanklike navigasiebeheer algoritme vir gebruik saam met die binnelus-versnellingsbeheerders word voorgestel. Die voertuig word om ’n kinematies haalbare verwysingstrajek deur hierdie navigasie algoritme gereguleer. ’n Aantal fundamentele trajekte word voorgestel wat maklik gekombineer kan word om komplekse drie dimensionele maneuvers te vorm. Die veelsydigheid en funksionaliteit van die outoloods word deur simulasieresultate met ’n verskeidenheid voertuie en verwysingstrajekte gedemonstreer.
26

Návrh autopilota bezpilotního letounu / Design of fixed-wing UAV autopilot

Němeček, Jakub January 2014 (has links)
This thesis describe approaches for autopilots for small unmanned aerial vehicles. Part of thesis is implementation of autopilot in Matlab/Simulink. The goal is to control computation model of the aircraft. Main part of thesis desribes high layer of control and navigation with focus on trajectory planning. Final algorithm is based on following the reference point between the aircraft and waypoint. Algorithm solves special positions of waypoints and error flag.
27

Networking of UAVs Using 802.11s

Polumuru, Pushpa 05 1900 (has links)
The thesis simulates the problem of network connectivity that occurs due to the dynamic nature of a network during flight. Nine nodes are provided with initial positions and are flown based on the path provided by leader-follower control algorithm using the server-client model. The application layer provides a point to point connection between the server and client and by using socket programming in the transport layer, a server and clients are established. Each node performs a neighbor discovery to discover its neighbors in the data link layer and physical layer performs the CSMA/CA using RTS/CTS. Finally, multi hop routing is achieved in network layer. Each client connects with server at dedicated interval to share each other location and then moves to next location. This process is continued over a period of several iterations until the relative distance is achieved. The constraints and limitations of the technology are network connectivity is lack of flexibility for random location of nodes, links established with a distant node having single neighbor is unstable. Performance of a system decreases with increase in number of nodes.
28

Design of a Hardware Platform for GPS-Based Orientation Sensing

Kirkpatrick, Daniel Eugene 12 March 2015 (has links)
Unmanned aerial vehicles (UAV's) have recently gained popularity in military, civil service, agriculture, commercial, and hobby use. This is due in part to their affordability, which comes from advances in component technology. That technology includes microelectromechanical systems (MEMS) for inertial sensing, microprocessor technology for sequential algorithm processing, field programmable gate arrays (FPGA's) for parallel data processing, camera technology, global navigation satellite systems (GNSS's) for navigation, and battery technology such as the high energy density of lithium polymer batteries. Despite the success of the technology to date, there remains development before UAV's should be flying alongside manned aircraft or over populated areas. One concern is that UAV electronics are not as safe, reliable or robust as manned-aircraft electronics because UAV's are not certified by the FAA. Another concern for UAV operation is with control algorithms and sensors, particularly in the estimation of the aircraft state, which is the position, velocity, and orientation of the aircraft. Some problems, such as numerical stability of a control algorithm or flight in windy and turbulent conditions have only been solved for certain conditions of wind, weather, or maneuvers. Outside those conditions, the actual orientation of a flying craft can mislead to the control system, and the control system may not be able to recover without a crash. When pilots fly manned aircraft in instrument meteorological conditions, or conditions of limited visibility of the ground, terrain, and obstacles, the pilot must fly in a manner which avoids abrupt maneuvers which could disturb accuracy of the aircraft's instruments. In a UAV without a pilot, there is a need to estimate the position and orientation of a UAV in an absolute manner unambiguous relative to the Earth. The position and orientation estimate must not depend on carefully controlled flight paths, but instead the estimate must be robust in the presence of UAV flight dynamics. This thesis describes the design, implementation, and evaluation of a hardware platform for GPS based orientation sensing research. In this work, we considered a receiver with three or four RF sections, each connected to an antenna in a triangular or tetrahedral pyramid constellation. Specific requirements for the receiver hardware and functionality were created. Circuitry was designed to meet the requirements using commercial off-the-shelf (COTS) radio frequency (RF) modules, a mid-sized microcontroller, an FPGA, and other supporting components. A printed circuit board (PCB) was designed, fabricated, assembled, and tested. A GPS baseband processor was designed and coded in Verilog hardware description language. The design was synthesized and loaded to the FPGA, and the microcontroller was programmed to track satellites. With the hardware platform implemented, live satellite signals were found and tracked, and experiments were performed to explore the validity of GPS based orientation sensing using short antenna baselines. The platform successfully allows the user to develop correlator designs and explore carrier phase based orientation measurement using only software/Verilog modifications. Initial results of carrier phase based orientation sensing are promising, but the presence of multipath signal interference shows room for improvement to the baseband processing code.
29

Eco-inspired Robust Control Design for Linear Dynamical Systems with Applications

Devarakonda, Nagini 20 October 2011 (has links)
No description available.
30

Acceleration based manoeuvre flight control system for unmanned aerial vehicles

Peddle, Iain K. 12 1900 (has links)
Thesis (PhD (Electrical and Electronic Engineering))--Stellenbosch University, 2008. / A strategy for the design of an effective, practically feasible, robust, computationally efficient autopilot for three dimensional manoeuvre flight control of Unmanned Aerial Vehicles is presented. The core feature of the strategy is the design of attitude independent inner loop acceleration controllers. With these controllers implemented, the aircraft is reduced to a point mass with a steerable acceleration vector when viewed from an outer loop guidance perspective. Trajectory generation is also simplified with reference trajectories only required to be kinematically feasible. Robustness is achieved through uncertainty encapsulation and disturbance rejection at an acceleration level. The detailed design and associated analysis of the inner loop acceleration controllers is carried out for the case where the airflow incidence angles are small. For this case it is shown that under mild practically feasible conditions the inner loop dynamics decouple and become linear, thereby allowing the derivation of closed form pole placement solutions. Dimensional and normalised non-dimensional time variants of the inner loop controllers are designed and their respective advantages highlighted. Pole placement constraints that arise due to the typically weak non-minimum phase nature of aircraft dynamics are developed. A generic, aircraft independent guidance control algorithm, well suited for use with the inner loop acceleration controllers, is also presented. The guidance algorithm regulates the aircraft about a kinematically feasible reference trajectory. A number of fundamental basis trajectories are presented which are easily linkable to form complex three dimensional manoeuvres. Results from simulations with a number of different aircraft and reference trajectories illustrate the versatility and functionality of the autopilot. Key words: Aircraft control, Autonomous vehicles, UAV flight control, Acceleration control, Aircraft guidance, Trajectory tracking, Manoeuvre flight control.

Page generated in 0.041 seconds