• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 5
  • Tagged with
  • 12
  • 12
  • 12
  • 9
  • 8
  • 8
  • 8
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Caractérisation des circuits neuronaux contrôlant l’activité des neurones dopaminergiques de l’aire tegmentale ventrale / Characterization of neuronal circuits controlling ventral tegmental area dopaminergic neuron activity

Jalabert, Marion 24 November 2011 (has links)
Les neurones dopaminergiques (DA) de l’aire tegmentale ventrale (VTA) sont influencés par différents stimuli comme des récompenses naturelles et d’autres stimuli moins physiologiques tels que les drogues d’abus. Ces drogues agissent en détournant les mécanismes d’apprentissage qui sous-tendent normalement la motivation pour des renforçateurs naturels. Les neurones DA, en conditions physiologiques, sont subtilement régulés par une balance entre tonus GABA et glutamatergique. Ils sont soumis à de multiples sources inhibitrices dont le noyau accumbens, les interneurones locaux ou les neurones GABA de la queue de la VTA (tVTA). Le glutamate est également important dans leur modulation. Il contrôle leur activité en bursts, qui est le mode de décharge le plus efficace pour libérer de la dopamine et coder des informations associées à la récompense. Il permet des adaptations synaptiques à long terme qui se sont révélées importantes dans la prise de drogue. La connaissance des facteurs endogènes qui contrôlent l’excitabilité des cellules DA de la VTA est essentielle à la compréhension des processus physiologiques (recherche de plaisir…) mais aussi pathologiques (addiction…). L’objectif de mon travail a été de comprendre les circuits de régulation des neurones DA en conditions physiologiques et lors de l’exposition à la morphine. Dans un premier temps, nous avons étudié les mécanismes de régulation des neurones DA par la formation hippocampique ventrale incluant le subiculum ventral et l’aire CA1 ventrale (vSUB/CA1). Grâce à l’utilisation d’approches d’électrophysiologie in vivo chez le rat anesthésié, nous avons montré que le vSUB/CA1 exerce un contrôle excitateur glutamatergique des neurones DA. Nous avons mis en évidence que cette voie vSUB/CA1-VTA est polysynaptique, faisant intervenir le BNST comme relais. J’ai aussi pu confirmer le rôle fonctionnel de la tVTA en tant que nouvelle structure GABA modulant l’activité des neurones DA, renforçant ainsi l’idée d’une balance entre tonus GABA et glutamatergique régulant les neurones DA in vivo.La deuxième partie de ma thèse a consisté en l’étude des circuits neuronaux à l’origine des effets excitateurs de la morphine sur les neurones DA de la VTA in vivo. L’hypothèse actuelle est que la morphine excite les neurones DA par un mécanisme de désinhibition en inhibant les neurones GABA de la VTA. Grâce à l’utilisation d’approches multiples, nous avons proposé un nouveau circuit expliquant les effets de la morphine. Ces effets sont la conséquence d’une modification de la balance GABA/glutamate par la morphine. Elle se traduit par une diminution du tonus GABA et d’une augmentation du tonus glutamatergique. Enfin, nous avons pu démontrer qu’une seule exposition à la cocaïne augmente l’activité de base des neurones DA. Chez ces animaux, les effets excitateurs de la morphine sont potentialisés confirmant ainsi l’hypothèse que l’amplitude de l’activation des neurones DA par la morphine dépend de leur état d’excitabilité. / Dopaminergic (DA) neurons of the ventral tegmental area (VTA) are influenced by several stimuli such as natural rewards or drugs of abuse. Drugs shunt learning mechanisms which underlie motivation for natural reinforcers. Under physiological conditions, DA neurons are regulated by a balance between GABA and glutamatergic inputs. They receive several inhibitory inputs especially from the nucleus accumbens, VTA local interneurons and GABA neurons of the tail of the VTA (tVTA). Glutamate is also important in modulating DA neuron activity. It controls their bursting activity which is the most efficient way to release dopamine and to encode reward-associated informations. It allows long term synaptic adaptations important for addiction. Knowing how these endogenous factors control VTA DA neuron excitability is essential to understand physiological (search for pleasure…) and pathological (drug addiction…) processes.In the first part of my thesis, we studied the regulation of the VTA by the hippocampal formation including the ventral subiculum and the ventral CA1 area (vSUB/CA1). Using electrophysiological approaches in anesthetized animal, we showed that the vSUB/CA1 controls VTA DA neurons and that this input is glutamatergic. We also demonstrated that the vSUB/CA1-VTA pathway is polysynaptic implicating the BNST as a relay. I also confirmed the inhibitory control of the VTA by tVTA, new GABA input to DA neurons. Thus, in vivo, DA neurons are regulated by a balance between GABA and glutamatergic inputs. The second part of my research consisted in studying the neuronal circuits underlying excitatory effects of morphine on VTA DA neurons in vivo. The actual hypothesis is that morphine excites DA neurons by a disinhibition mechanism inhibiting VTA GABA neurons. Using several approaches (electrophysiological approaches in anesthetized animal, tract-tracing methods), we proposed a new circuitry explaining morphine effects. These excitatory effects result from a modification of the balance between GABA and glutamatergic inputs with a decrease of the GABA tone and an increase of the glutamatergic tone. Finally, we demonstrated that an acute cocaine exposure increases DA neuron activity. In animals exposed to cocaine, morphine excitatory effects are potentiated. This last experiment confirms the hypothesis that the amplitude of morphine-induced activation of VTA DA neurons depends on their excitability state.
12

The Bed Nucleus of the Stria Terminalis between Stress and Reward / Le Noyau du Lit de la Strie Terminale : entre Stress et Récompense

Glangetas, Christelle 18 December 2014 (has links)
L’objectif principal de mon projet de thèse a été d’identifier les mécanismes neuronaux adaptatifs se mettant en place au niveau des circuits de la récompense et des circuits activés en réponse à un stress aigu. Plus spécifiquement, nous avons étudié le rôle du noyau du lit de la strie terminale (BNST) au sein de ces deux circuits. Mon hypothèse est que le BNST appartient à un circuit de structures interconnectées dans lequel il intègre des informations contextuelles (hippocampe ventral) et des informations émotionnelles (cortex préfrontal médian) afin, d’une part, de réguler les niveaux d’anxiété innés ainsi que les réponses induites par les centres du stress suite à un épisode de stress aigu mais également, d’adapter l’activité des neurones dopaminergiques de l’aire tegmentale ventrale (VTA) en vue de motiver ou d’empêcher la reproduction d’un comportement associé à un stimulus récompensant ou aversif. Afin de tester cette hypothèse, nous avons mis en place et développé différents projets de recherche combinant des approches d’électrophysiologie in vivo, anatomiques et comportementales. Dans un premier temps, nous nous sommes intéressés au BNST en tant que structure clef participant à la régulation des centres de stress. Grâce à l’utilisation d’approches d’électrophysiologie in vivo chez la souris anesthésiée, nous avons montré qu’après l’exposition à un stress aigu, les neurones du BNST adaptent leur réponse suite à la stimulation du cortex préfrontal médian et passent d’une dépression à long terme (LTD) en situation contrôle à une potentialisation à long terme (LTP) après un stress aigu. Nous avons disséqué une partie des mécanismes permettant l’élaboration de ces plasticités grâce à l’utilisation de souris génétiquement modifiés pour le récepteur aux endocannabinoïdes de type 1 (CB1-R). Ainsi, nous avons trouvé que la LTD et la LTP mis en place dans le BNST sont médiées par le système endocannabinoïde via les récepteurs CB1. Ensuite, nous avons étudié le rôle du ventral subiculum (vSUB) dans la régulation des neurones du BNST ainsi que l’impact de l’activation de cette voie vSUB-BNST sur l’autre voie glutamatergique ILCx-BNST. Tout d’abord, nous avons montré par des approches électrophysiologiques et anatomiques, qu’un même neurone du BNST est capable d’intégrer des informations provenant à la fois du ventral subiculum et du cortex infralimbic (ILCx). Nous avons induit in vivo une LTP NMDA dépendante dans la voie vSUB-BNST suite à un protocole de stimulation haute fréquence dans le vSUB alors qu’en parallèle ce même protocole induit une LTD sur ces mêmes neurones dans la voie ILCx–BNST. Deplus, nous avons noté que ces adaptations plastiques se mettant en place dans le BNST suiteà une simple stimulation haute fréquence dans le vSUB permettent à long terme de diminuerles niveaux d’anxiété innés chez le rat. Enfin, nous avons mis en évidence que le BNST est un relai excitateur entre le vSUBet la VTA. Nous avons montré qu’une stimulation à haute fréquence dans le vSUBpotentialise in vivo l’activité des neurones dopaminergiques (DA) de la VTA. Or le vSUBne projette pas de manière directe sur les neurones DA de la VTA. Nous avons observé quece protocole de stimulation haute fréquence dans le vSUB induit dans un premier temps uneLTP NMDA dépendante dans les neurones du BNST projetant à la VTA qui est nécessairepour observer cette potentialisation des neurones DA. En dernier lieu, nous avons montréque cette potentialisation des neurones DA de la VTA augmente la réponse locomotrice à unchallenge avec de la cocaine.Ainsi, l’ensemble de ces projets nous ont permis de confirmer et de préciser lafonction majeure du BNST dans la régulation du stress et de l’anxiété ainsi que dans lecircuit de la motivation. / The main goal of my PhD was to identify the adaptive neuronal mechanismsdeveloping in the reward circuit and in the circuit implicated in the regulation of stressresponses. More specifically, we have studied the function of the bed nucleus of the striaterminalis (BNST) in both circuits.My hypothesis was that, the BNST belongs to interconnected circuits in whichintegrates contextual (from ventral hippocampus) and emotional informations (from medialprefrontal cortex). Thus, the BNST diffuses these informations in order to regulate the basalinnate level of anxiety and stress centers responses induced after acute stress exposure, butalso to adapt the activity of dopaminergic neurons of the ventral tegmental area (VTA) thatcan promote or prevent a behavioral task associated with a rewarding or aversive stimulus.To test this hypothesis, we decided to develop several research projects usingelectrophysiological, anatomical and behavioral approaches.Firstly, we focused our interest on the stress circuit in which the BNST is a keystructure which participates in regulating the responses of stress centers after acute stressexposure. By using in vivo electrophysiology approach in anesthetized mice, we haveshown that after acute restraint stress, BNST neurons adapt their plastic responses inducedby the tetanic stimulation of the medial prefrontal cortex: switch from long term depression(LTD) under control condition to long term potentiation (LTP) after acute stress condition.Furthermore, we demonstrated that both LTD and LTP are endocannabinoid dependent byusing genetic modified mice for the type 1 endocannabinoid receptors and localpharmacological approach in the BNST.In a second step, we studied the function of the ventral subiculum (vSUB) in theregulation of BNST neurons and the impact of the vSUB-BNST pathway activation on theother glutamatergic ILCx-BNST pathway. In a first set of experiments, we showed that asame single BNST neuron could integrate informations from both vSUB and the infralimbiccortex. By using high frequency stimulation (HFS) protocols, we induced in vivo NMDAdependentLTP in the vSUB-BNST pathway whereas the same protocol led to LTD in thesame BNST neurons in the ILCx-BNST pathway. Moreover, we noted single application ofHFS protocol in the vSUB induced a long term decrease of the basal innate level of anxietyin rats.Lastly, we presented the BNST as a key excitatory relay between the vSUB and theVTA. Here, we have shown that in vivo HFS protocols in the vSUB potentiate the activity ofdopaminergic (DA) neurons of the VTA. However, the vSUB does not directly project to theVTA. We observed that a HFS protocol in the vSUB first induce NMDA-dependent LTP inBNST neurons that project to the VTA, which is necessary to promote the potentiation of7VTA DA neurons. In the last step, we demonstrated in vivo that the potentiation of VTA DAneurons increases the locomotor response to cocaine challenge.All together, these projects allow us to confirm and detail the major function of theBNST in the regulation of stress and anxiety and also in the motivational circuit.

Page generated in 0.0958 seconds